Simulation of early COVID-19 using SIR model and variants (SEIR ...).

Overview

COVID-19-simulation

Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO) of the Federal Technologycal University - Parana (UTFPR-ct) in the scope of the project GYRO4Life

Running the simulation

The code runs based on a csv with the same structure of nc85.csv or oa85.csv files which has a time series of confirmed cases and deaths and metadata information about the region being characterized on the line. Both cases and deaths have to be given for the simulation.

The main code is simulação.py, which receives a couple of arguments:

  • 1: region code (for the csv being used). In case the argument is empty ("-"), it will run for all lines of the csv [ex: -28]
  • 2: Name of the csv file with confirmed cases (omit the '.csv') [ex: nc85.csv -> -nc85]
  • 2: Name of the csv file with confirmed deaths (omit the '.csv') [ex: oa85.csv -> -oa85]
  • 3: Fitting method [-0: basinhopp, -1: differential evolution [default], -2: powell, -3: cobyla] [ex: -1]
  • 4: Boolean and quantity of opening and closure regimes for the simulation for confirmed cases (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 5: Boolean and quantity of opening and closure regimes for the simulation for confirmed deaths (works as a contingency method reducing the probability of infection). '-0-0' ignores this factor for a simulation without contingency methods. If a quantity is given on the second argument, the boolean argument must be 1 [ex: '-1-1']
  • 6: Type of simulation [-n: simulation of one location (one csv line), -s: simulation of all csv locations, -b: bootstrap of one location [has uncertainty], -sl: simulation of a location with sensibility analysis] [ex: -n]
  • 7: Simulation period in days [ex: -200]
  • 8: number of days for validation [ex: -5]
  • 9: Subtype of simulation [-mod: hospitalization simulation, -std: SEIR simulation with asymptomatic and deaths]
  • 10: Run tests and additional graphics [-0: no, -1: yes]

Example call for a SEIR simulation with bootstrap using cases and deaths in Brazil. The simulation is done for 200 days and with a validation of 5 days.

python simulacao.py -28 -nc85 -oa85 -1 -1-2-0-0 -b -200 -5 -str -0
Owner
José Paulo Pereira das Dores Savioli
José Paulo Pereira das Dores Savioli
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022