Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Overview

Y-Net

Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021

Project page: ipcv.github.io/Acappella/
Paper: Arxiv, Supplementary Material, BMVC (not available yet)

Running a demo / Y-Net Inference

We provide simple functions to load models with pre-trained weights. Steps:

  1. Clone the repo or download y-net>VnBSS>models (models can run as a standalone package)
  2. Load a model:
from VnBSS import y_net_gr # or from models import y_net_gr 
model = y_net_gr()

Examples can be found at y_net>examples. Also you can have a look at tcol.py or example.py, files which computes the demos shown in the website.
Check a demo fully working:
Open In Colab

Citation

@inproceedings{acappella,
    author    = {Juan F. Montesinos and
                 Venkatesh S. Kadandale and
                 Gloria Haro},
    title     = {A cappella: Audio-visual Singing VoiceSeparation},
    booktitle = {British Machine Vision Conference (BMVC)},
    year      = {2021},

}

.
.
.
.
.
.

Training / Using DEV code

Training

The most difficult part is to prepare the dataset as everything is builded upon a very specific format.
To run training:
python run.py -m model_name --workname experiment_name --arxiv_path directory_of_experiments --pretrained_from path_pret_weights
You can inspect the argparse at default.py>argparse_default.
Possible model names are: y_net_g, y_net_gr, y_net_m,y_net_r,u_net,llcp

Testing

  1. Go to manuscript_scripts and replace checkpoint paths by yours in the testing scripts.
  2. Run: bash manuscript_scripts/test_gr_r.sh
  3. Replace the paths of manuscript_scripts/auto_metrics.py by your experiment_directory path.
  4. Run: python manuscript_scripts/auto_metrics.py to visualise results.

It's a complicated framework. HELP!

The best option to run the framework is to debug! Having a runable code helps to see input shapes, dataflow and to run line by line. Download The circle of life demo with the files already processed. It will act like a dataset of 6 samples. You can download it from Google Drive 1.1 Gb.

  1. Unzip the file
  2. run python run.py -m y_net_gr (for example) TODO :D

Everything has been configured to run by default this way.

The model

Each effective model is wrapped by a nn.Module which takes care of computing the STFT, the mask, returning the waveform etcetera... This wrapper can be found at VnBSS>models>y_net.py>YNet. To get rid of this you can simply inherit the class, take minimum layers and keep the core_forward method, which is the inference step without the miscelanea.

Downloading the datasets

To download the Acappella Dataset run the script at preproc>preprocess.py
To download the demos used in the website run preproc>demo_preprocessor.py
Audioset can be downloaded via webapp, streamlit run audioset.py

Computing the demos

Demos shown in the website can be computed:

  • The circle of life demo is obtained by running tcol.py. First turn the flag COMPUTE=True. To visualize the results turn the flag COMPUTE=False and run a streamlit run tcol.py.

FAQs

  1. How to change the optimizer's hyperparameters?
    Go to config>optimizer.json
  2. How to change clip duration, video framerate, STFT parameters or audio samplerate?
    Go to config>__init__.py
  3. How to change the batch size or the amount of epochs?
    Go to config>hyptrs.json
  4. How to dump predictions from the training and test set
    Go to default.py. Modify DUMP_FILES (can be controlled at a subset level). force argument skips the iteration-wise conditions and dumps for every single network prediction.
  5. Is tensorboard enabled?
    Yes, you will find tensorboard records at your_experiment_directory/used_workname/tensorboard
  6. Can I resume an experiment?
    Yes, if you set exactly the same experiment folder and workname, the system will detect it and will resume from there.
  7. I'm trying to resume but found AssertionError If there is an exception before running the model
  8. How to change the amount of layers of U-Net
    U-net is build dynamically given a list of layers per block as shown in models>__init__.py from outer to inner blocks.
  9. How to modify the default network values?
    The json file config>net_cfg.json overwrites any default configuration from the model.
Owner
Juan F. Montesinos
PhD student at Pompeu Fabra university Barcelona
Juan F. Montesinos
A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

921 Jan 05, 2023
Synthesia but open source, made in python and free

PyPiano Synthesia but open source, made in python and free Requirements are in requirements.txt If you struggle with installation of pyaudio, run : pi

DaCapo 11 Nov 06, 2022
🎵 Python sound notifications made easy

chime Python sound notifications made easy. Table of contents Table of contents Motivation Installation Basic usage Theming IPython/Jupyter magic Exce

Max Halford 231 Jan 09, 2023
Simple, hackable offline speech to text - using the VOSK-API.

Nerd Dictation Offline Speech to Text for Desktop Linux. This is a utility that provides simple access speech to text for using in Linux without being

Campbell Barton 844 Jan 07, 2023
Telegram Voice-Chat Bot Written In Python Using Pyrogram.

Telegram Voice-Chat Bot Telegram Voice-Chat Bot To Play Music From Various Sources In Your Group Support All linux based os. Windows Mac Diagram Requi

TheHamkerCat 314 Dec 29, 2022
GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

Bytedance Inc. 1.3k Jan 04, 2023
An audio-solving python funcaptcha solving module

funcapsolver funcapsolver is a funcaptcha audio-solving module, which allows captchas to be interacted with and solved with the use of google's speech

Acier 8 Nov 21, 2022
❤️ Hi There Im Cozmo Music Bot A next gen powerful telegram group Music bot for get your Songs and music @Venuja_Sadew

🎵 Cozmo MUSIC 🎵 Cozmo Music is a Music powerfull bot for playing music on telegram voice chat groups. Requirements FFmpeg NodeJS nodesource.com Pyth

Venuja Sadew 3 Jan 08, 2022
Port Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. / 筆墨クミDeepvocal中文音源

Hitsuboku Kumi (筆墨クミ) is a UTAU virtual singer developed by Cubialpha. This project ports Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. This is the first open-source deepvocal voicebank on Gith

8 Apr 26, 2022
A Python wrapper for the high-quality vocoder "World"

PyWORLD - A Python wrapper of WORLD Vocoder Linux Windows WORLD Vocoder is a fast and high-quality vocoder which parameterizes speech into three compo

Jeremy Hsu 583 Dec 15, 2022
Open-Source bot to play songs in your Telegram's Group Voice Chat. Powered by @Akki_ThePro

VcPlayer Telegram Voice-Chat Bot [PyTGCalls] ⇝ Requirements ⇜ Account requirements A Telegram account to use as the music bot, You cannot use regular

Akki ThePro 2 Dec 25, 2021
commonfate 📦commonfate 📦 - Common Fate Model and Transform.

Common Fate Transform and Model for Python This package is a python implementation of the Common Fate Transform and Model to be used for audio source

Fabian-Robert Stöter 18 Jan 08, 2022
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

5 Oct 07, 2022
Sparse Beta-Divergence Tensor Factorization Library

NTFLib Sparse Beta-Divergence Tensor Factorization Library Based off of this beta-NTF project this library is specially-built to handle tensors where

Stitch Fix Technology 46 Jan 08, 2022
Accompanying code for our paper "Point Cloud Audio Processing"

Point Cloud Audio Processing Krishna Subramani1, Paris Smaragdis1 1UIUC Paper For the necessary libraries/prerequisites, please use conda/anaconda to

Krishna Subramani 17 Nov 17, 2022
A Simple Script that will help you to Play / Change Songs with just your Voice

Auto-Spotify using Voice Recognition A Simple Script that will help you to Play / Change Songs with just your Voice Explore the docs » Table of Conten

Mehul Shah 1 Nov 21, 2021
AudioDVP:Photorealistic Audio-driven Video Portraits

AudioDVP This is the official implementation of Photorealistic Audio-driven Video Portraits. Major Requirements Ubuntu = 18.04 PyTorch = 1.2 GCC =

232 Jan 03, 2023
Learn chords with your MIDI keyboard !

miditeach miditeach is a music learning tool that can be used to practice your chords skills with a midi keyboard 🎹 ! Features Midi keyboard input se

Alexis LOUIS 3 Oct 20, 2021
Python implementation of the Short Term Objective Intelligibility measure

Python implementation of STOI Implementation of the classical and extended Short Term Objective Intelligibility measures Intelligibility measure which

Pariente Manuel 250 Dec 21, 2022
A Python port and library-fication of the midicsv tool by John Walker.

A Python port and library-fication of the midicsv tool by John Walker. If you need to convert MIDI files to human-readable text files and back, this is the library for you.

Tim Wedde 52 Dec 29, 2022