A collection of loss functions for medical image segmentation

Related tags

Deep LearningSegLoss
Overview

Loss functions for image segmentation

A collection of loss functions for medical image segmentation

@article{LossOdyssey,
title = {Loss Odyssey in Medical Image Segmentation},
journal = {Medical Image Analysis},
volume = {71},
pages = {102035},
year = {2021},
author = {Jun Ma and Jianan Chen and Matthew Ng and Rui Huang and Yu Li and Chen Li and Xiaoping Yang and Anne L. Martel}
doi = {https://doi.org/10.1016/j.media.2021.102035},
url = {https://www.sciencedirect.com/science/article/pii/S1361841521000815}
}

Take-home message: compound loss functions are the most robust losses, especially for the highly imbalanced segmentation tasks.

Some recent side evidence: the winner in MICCAI 2020 HECKTOR Challenge used DiceFocal loss; the winner and runner-up in MICCAI 2020 ADAM Challenge used DiceTopK loss.

Date First Author Title Conference/Journal
20210330 Suprosanna Shit and Johannes C. Paetzold clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation (keras and pytorch) CVPR 2021
20210318 Xiaoling Hu Topology-Aware Segmentation Using Discrete Morse Theory arxiv ICLR 2021
20210211 Hoel Kervadec Beyond pixel-wise supervision: semantic segmentation with higher-order shape descriptors Submitted to MIDL 2021
20210210 Rosana EL Jurdi A Surprisingly Effective Perimeter-based Loss for Medical Image Segmentation Submitted to MIDL 2021
20201222 Zeju Li Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation TMI
20210129 Nick Byrne A Persistent Homology-Based Topological Loss Function for Multi-class CNN Segmentation of Cardiac MRI arxiv STACOM 2020
20201019 Hyunseok Seo Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions TMI
20200929 Stefan Gerl A Distance-Based Loss for Smooth and Continuous Skin Layer Segmentation in Optoacoustic Images MICCAI 2020
20200821 Nick Byrne A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI arxiv STACOM
20200720 Boris Shirokikh Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation arxiv (pytorch) MICCAI 2020
20200708 Gonglei Shi Marginal loss and exclusion loss for partially supervised multi-organ segmentation (arXiv) MedIA
20200706 Yuan Lan An Elastic Interaction-Based Loss Function for Medical Image Segmentation (pytorch) (arXiv) MICCAI 2020
20200615 Tom Eelbode Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index TMI
20200605 Guotai Wang Noise-robust Dice loss: A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images (pytorch) TMI
202004 J. H. Moltz Contour Dice coefficient (CDC) Loss: Learning a Loss Function for Segmentation: A Feasibility Study ISBI
201912 Yuan Xue Shape-Aware Organ Segmentation by Predicting Signed Distance Maps (arxiv) (pytorch) AAAI 2020
201912 Xiaoling Hu Topology-Preserving Deep Image Segmentation (paper) (pytorch) NeurIPS
201910 Shuai Zhao Region Mutual Information Loss for Semantic Segmentation (paper) (pytorch) NeurIPS 2019
201910 Shuai Zhao Correlation Maximized Structural Similarity Loss for Semantic Segmentation (paper) arxiv
201908 Pierre-AntoineGanaye Removing Segmentation Inconsistencies with Semi-Supervised Non-Adjacency Constraint (paper) (official pytorch) Medical Image Analysis
201906 Xu Chen Learning Active Contour Models for Medical Image Segmentation (paper) (official-keras) CVPR 2019
20190422 Davood Karimi Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks (paper) (pytorch) TMI 201907
20190417 Francesco Caliva Distance Map Loss Penalty Term for Semantic Segmentation (paper) MIDL 2019
20190411 Su Yang Major Vessel Segmentation on X-ray Coronary Angiography using Deep Networks with a Novel Penalty Loss Function (paper) MIDL 2019
20190405 Boah Kim Multiphase Level-Set Loss for Semi-Supervised and Unsupervised Segmentation with Deep Learning (paper) arxiv
201901 Seyed Raein Hashemi Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection (paper) IEEE Access
201812 Hoel Kervadec Boundary loss for highly unbalanced segmentation (paper), (pytorch 1.0) MIDL 2019
201810 Nabila Abraham A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation (paper) (keras) ISBI 2019
201809 Fabian Isensee CE+Dice: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation (paper) arxiv
20180831 Ken C. L. Wong 3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes (paper) MICCAI 2018
20180815 Wentao Zhu Dice+Focal: AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck Anatomy (arxiv) (pytorch) Medical Physics
201806 Javier Ribera Weighted Hausdorff Distance: Locating Objects Without Bounding Boxes (paper), (pytorch) CVPR 2019
201805 Saeid Asgari Taghanaki Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation (arxiv) (keras) Computerized Medical Imaging and Graphics
201709 S M Masudur Rahman AL ARIF Shape-aware deep convolutional neural network for vertebrae segmentation (paper) MICCAI 2017 Workshop
201708 Tsung-Yi Lin Focal Loss for Dense Object Detection (paper), (code) ICCV, TPAMI
20170711 Carole Sudre Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations (paper) DLMIA 2017
20170703 Lucas Fidon Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks (paper) MICCAI 2017 BrainLes
201705 Maxim Berman The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks (paper), (code) CVPR 2018
201701 Seyed Sadegh Mohseni Salehi Tversky loss function for image segmentation using 3D fully convolutional deep networks (paper) MICCAI 2017 MLMI
201612 Md Atiqur Rahman Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation (paper) 2016 International Symposium on Visual Computing
201608 Michal Drozdzal "Dice Loss (without square)" The Importance of Skip Connections in Biomedical Image Segmentation (arxiv) DLMIA 2016
201606 Fausto Milletari "Dice Loss (with square)" V-net: Fully convolutional neural networks for volumetric medical image segmentation (arxiv), (caffe code) International Conference on 3D Vision
201605 Zifeng Wu TopK loss Bridging Category-level and Instance-level Semantic Image Segmentation (paper) arxiv
201511 Tom Brosch "Sensitivity-Specifity loss" Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation (paper) (code) MICCAI 2015
201505 Olaf Ronneberger "Weighted cross entropy" U-Net: Convolutional Networks for Biomedical Image Segmentation (paper) MICCAI 2015
201309 Gabriela Csurka What is a good evaluation measure for semantic segmentation? (paper) BMVA 2013

Most of the corresponding tensorflow code can be found here.

for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting

Official code of APHYNITY Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting (ICLR 2021, Oral) Yuan Yin*, Vincent Le Guen*

Yuan Yin 24 Oct 24, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically

NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh

Xavier Petit 6 Aug 18, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Akshat Surolia 2 May 11, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022