Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

Related tags

Machine LearningBO_GP
Overview

BO-GP

Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

The BO-GP codes are developed using GPy and GPyOpt. The optimizer is non-intrusive and can be linked to any CFD solver.

Reference:

Y. Morita, S. Rezaeiravesh, N. Tabatabaeia, R. Vinuesaa, K. Fukagata, P. Schlatter, Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems, Journal of Computational Physics, 2021.

Exmaple: Turbulent boundary layer (TBL) with non-zero pressure gradient.

See Section 5 in the above reference. The flow is simulated using OpenFOAM.

Questions/Remarks:

Questions can be forwarded to [email protected], [email protected], and [email protected].

List of included files and folders:

  • driver_BOGP.py: main driver for running the example, i.e. BO-GP of pessure-gradient TBL simulated by OpenFOAM.

  • gpOptim/: Bayesian optimization codes based on Gaussian processes, using GPy and GPyOpt.

    • workDir/
      • gpList.dat
    • gpOpt.py
  • OFcase/: OpenFOAM case folder

    • system/
      • yTopParams.in (written in main_pre.py, used by blockMeshDict & controlDict).
      • blockMeshDict
      • controlDict
      • decomposeParDict
      • fvSchemes
      • fvSolution
    • 0/
      • U,p,k,omega,nut
      • *_IC files (use inflow.py to make these files).
    • constant/
      • polyMesh/ (not included)
      • transportProperties
    • jobscript
    • OFrun.sh
  • OFpost/: Post-processing the results of OFcase.

    • main_post.py
  • OFpre/: Pre-processing the OFcase

    • main_pre.py: creating yTopParams.in using the latest parameter sample.
    • inflow/inflow_gen.py: Creating inflow conditions for RANS of TBL with pressure gradient using DNS data for the TBL with zero-pressure gradient.
  • figs/: To save figures produced when running the optimization.

    • make_movie.sh: make movie in png/ from pdf files.
  • data/: Created when running the BO-GP.

  • storage/: Created when running the BO-GP.

Settings & inputs (to run the example):

  • In driver_BOGP_example.py: U_infty, delta99_in, Nx, Ny, Nz, t, loop params, path, beta_t etc.
  • /gpOptim/gpOpt.py: number of parameters, range of parameters, tolerance, GP kernel, xi, etc.

Requirements:

  1. python3.X
  2. numpy
  3. matplotlib
  4. GPy
  5. GpyOpt
  6. OpenFOAM v.7 (or v.6)
  7. bl_data/ in OFpre/inflow/ (DNS data from here)

How to test the example for different settings:

  • To change the structure of the geometry

    • create the new inflow from precursor using OFpre/inflow/inflow_gen.py (precursor results required)
    • update the blockMeshDict
    • update the driver accordingly
  • To change the number of prosessors used for the OpenFOAM simulation

    • update nProcessors in the driver
    • update decomposeParDict
    • update jobScript
  • To change the parameterization of the upper wall

    • change qBound in gpOpt.py
    • update blockMeshDict
  • To change beta_t (target pressure-gradient parameter beta)

    • change beta_t in the driver
  • When you clone this repository and get errors, please try run:

    • mkdir data
    • mkdir storage
    • mkdir OFcase/constant/polyMesh/
Owner
KTH Mechanics
KTH Mechanics
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022