Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

Related tags

Machine LearningBO_GP
Overview

BO-GP

Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

The BO-GP codes are developed using GPy and GPyOpt. The optimizer is non-intrusive and can be linked to any CFD solver.

Reference:

Y. Morita, S. Rezaeiravesh, N. Tabatabaeia, R. Vinuesaa, K. Fukagata, P. Schlatter, Applying Bayesian Optimization with Gaussian Process Regression to Computational Fluid Dynamics Problems, Journal of Computational Physics, 2021.

Exmaple: Turbulent boundary layer (TBL) with non-zero pressure gradient.

See Section 5 in the above reference. The flow is simulated using OpenFOAM.

Questions/Remarks:

Questions can be forwarded to [email protected], [email protected], and [email protected].

List of included files and folders:

  • driver_BOGP.py: main driver for running the example, i.e. BO-GP of pessure-gradient TBL simulated by OpenFOAM.

  • gpOptim/: Bayesian optimization codes based on Gaussian processes, using GPy and GPyOpt.

    • workDir/
      • gpList.dat
    • gpOpt.py
  • OFcase/: OpenFOAM case folder

    • system/
      • yTopParams.in (written in main_pre.py, used by blockMeshDict & controlDict).
      • blockMeshDict
      • controlDict
      • decomposeParDict
      • fvSchemes
      • fvSolution
    • 0/
      • U,p,k,omega,nut
      • *_IC files (use inflow.py to make these files).
    • constant/
      • polyMesh/ (not included)
      • transportProperties
    • jobscript
    • OFrun.sh
  • OFpost/: Post-processing the results of OFcase.

    • main_post.py
  • OFpre/: Pre-processing the OFcase

    • main_pre.py: creating yTopParams.in using the latest parameter sample.
    • inflow/inflow_gen.py: Creating inflow conditions for RANS of TBL with pressure gradient using DNS data for the TBL with zero-pressure gradient.
  • figs/: To save figures produced when running the optimization.

    • make_movie.sh: make movie in png/ from pdf files.
  • data/: Created when running the BO-GP.

  • storage/: Created when running the BO-GP.

Settings & inputs (to run the example):

  • In driver_BOGP_example.py: U_infty, delta99_in, Nx, Ny, Nz, t, loop params, path, beta_t etc.
  • /gpOptim/gpOpt.py: number of parameters, range of parameters, tolerance, GP kernel, xi, etc.

Requirements:

  1. python3.X
  2. numpy
  3. matplotlib
  4. GPy
  5. GpyOpt
  6. OpenFOAM v.7 (or v.6)
  7. bl_data/ in OFpre/inflow/ (DNS data from here)

How to test the example for different settings:

  • To change the structure of the geometry

    • create the new inflow from precursor using OFpre/inflow/inflow_gen.py (precursor results required)
    • update the blockMeshDict
    • update the driver accordingly
  • To change the number of prosessors used for the OpenFOAM simulation

    • update nProcessors in the driver
    • update decomposeParDict
    • update jobScript
  • To change the parameterization of the upper wall

    • change qBound in gpOpt.py
    • update blockMeshDict
  • To change beta_t (target pressure-gradient parameter beta)

    • change beta_t in the driver
  • When you clone this repository and get errors, please try run:

    • mkdir data
    • mkdir storage
    • mkdir OFcase/constant/polyMesh/
Owner
KTH Mechanics
KTH Mechanics
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022