Learning to Prompt for Vision-Language Models.

Related tags

Deep LearningCoOp
Overview

CoOp

Paper: Learning to Prompt for Vision-Language Models

Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu

CoOp (Context Optimization) is a differentiable approach that focuses on continuous prompt learning to facilitate deployment of pre-trained vision language models (like CLIP) in downstream datasets.

Updates

  • 15.10.2021: We find that the best_val model and the last_step model achieve similar performance, so we set TEST.FINAL_MODEL = "last_step" for all datasets to save training time. Why we used best_val: the (tiny) validation set was designed for the linear probe approach, which requires extensive tuning for its hyperparameters, so we used the best_val model for CoOp as well for fair comparison (in this way, both approaches have access to the validation set).

  • 09.10.2021: Important changes are made to Dassl's transforms.py. Please pull the latest commits from https://github.com/KaiyangZhou/Dassl.pytorch and this repo to make sure the code works properly. In particular, 1) center_crop now becomes a default transform in testing (applied after resizing the smaller edge to a certain size to keep the image aspect ratio), and 2) for training, Resize(cfg.INPUT.SIZE) is deactivated when random_crop or random_resized_crop is used. Please read this issue on how these changes might affect the performance.

  • 18.09.2021: We have fixed an error in Dassl which could cause a training data loader to have zero length (so no training will be performed) when the dataset size is smaller than the batch size (due to drop_last=True). Please pull the latest commit for Dassl (>= 8eecc3c). This error led to lower results for CoOp in EuroSAT's 1- and 2-shot settings (others are all correct). We will update the paper on arxiv to fix this error.

How to Install

This code is built on top of the awesome toolbox Dassl.pytorch so you need to install the dassl environment first. Simply follow the instructions described here to install dassl as well as PyTorch. After that, run pip install -r requirements.txt under CoOp/ to install a few more packages required by CLIP (this should be done when dassl is activated). Then, you are ready to go.

Follow DATASETS.md to install the datasets.

How to Run

We provide the running scripts in scripts/. Make sure you change the path in DATA and run the commands under CoOp/scripts/.

Few-Shot Learning

All you need is CoOp/scripts/main.sh, which contains six input arguments.

DATASET takes as input a dataset name, like imagenet or caltech101. The valid names are the files' names in CoOp/configs/datasets/.

CFG means which config file to use, such as rn50, rn101 or vit_b32 (see CoOp/configs/trainers/CoOp/). Note that for ImageNet, we use CoOp/configs/trainers/CoOp/*_ep50.yaml for all settings (please follow the implementation details shown in the paper).

Below we provide examples on how to run CoOp on Caltech101.

CLIP + CoOp (M=16, end):

  • 1 shot: bash main.sh caltech101 rn50_ep50 end 16 1 False
  • 2 shots: bash main.sh caltech101 rn50_ep100 end 16 2 False
  • 4 shots: bash main.sh caltech101 rn50_ep100 end 16 4 False
  • 8 shots: bash main.sh caltech101 rn50 end 16 8 False
  • 16 shots: bash main.sh caltech101 rn50 end 16 16 False

CLIP + CoOp (M=16, mid):

  • 1 shot: bash main.sh caltech101 rn50_ep50 middle 16 1 False
  • 2 shots: bash main.sh caltech101 rn50_ep100 middle 16 2 False
  • 4 shots: bash main.sh caltech101 rn50_ep100 middle 16 4 False
  • 8 shots: bash main.sh caltech101 rn50 middle 16 8 False
  • 16 shots: bash main.sh caltech101 rn50 middle 16 16 False

CLIP + CoOp (M=16, end, CSC):

  • 1 shot: bash main.sh caltech101 rn50_ep50 end 16 1 True
  • 2 shots: bash main.sh caltech101 rn50_ep100 end 16 2 True
  • 4 shots: bash main.sh caltech101 rn50_ep100 end 16 4 True
  • 8 shots: bash main.sh caltech101 rn50 end 16 8 True
  • 16 shots: bash main.sh caltech101 rn50 end 16 16 True

CLIP + CoOp (M=16, mid, CSC):

  • 1 shot: bash main.sh caltech101 rn50_ep50 middle 16 1 True
  • 2 shots: bash main.sh caltech101 rn50_ep100 middle 16 2 True
  • 4 shots: bash main.sh caltech101 rn50_ep100 middle 16 4 True
  • 8 shots: bash main.sh caltech101 rn50 middle 16 8 True
  • 16 shots: bash main.sh caltech101 rn50 middle 16 16 True

After the experiments are finished, you can use parse_test_res.py to calculate the average results instead of manually looking into the log files. Say the structure of output/ is

output
|–– caltech101/
|   |–– CoOp/
|   |   |–– rn50_16shots/
|   |   |   |–– nctx16_cscFalse_ctpend/
|   |   |   |   |–– seed1/
|   |   |   |   |–– seed2/
|   |   |   |   |–– seed3/
|   |   |–– rn50_8shots/
|   |   |   |–– nctx16_cscFalse_ctpend/
|   |   |   |   |–– seed1/
|   |   |   |   |–– seed2/
|   |   |   |   |–– seed3/

To calculate the average results for the folder rn50_16shots/nctx16_cscFalse_ctpend/, you can run

python parse_test_res.py output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend

Then, you will see something like this in your terminal

Parsing files in output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed1/log.txt. accuracy: 91.81%. error: 8.19%.
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed2/log.txt. accuracy: 92.01%. error: 7.99%.
file: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend/seed3/log.txt. accuracy: 92.17%. error: 7.83%.
===
Summary of directory: output/caltech101/CoOp/rn50_16shots/nctx16_cscFalse_ctpend
* accuracy: 92.00% +- 0.15%
* error: 8.00% +- 0.15%
===

How to initialize the context tokens with pre-trained word vectors? Specify the words for the parameter TRAINER.COOP.CTX_INIT in your config file. In our paper, we use configs/trainers/rn50_ctxv1.yaml (give this file to --config-file, see scripts/main.sh), which uses "a photo of a" as the initialization words.

How to visualize nearest words for the learned context tokens? All you need is interpret_prompt.py. Say the learned tokens are saved in a/b/c/prompt_learner/model.pth.tar and you would like to see the top-3 nearest words for each token. In this case, run python interpret_prompt.py a/b/c/prompt_learner/model.pth.tar 3

Robustness to Distribution Shift

To reproduce the robustness experiments, you can simply load the models learned on ImageNet and evaluate them on the following datasets: imagenetv2, imagenet-sketch, imagenet-a and imagenet-r.

The command is provided in CoOp/scripts/eval.sh. The key arguments are --model-dir, --load-epoch and --eval-only. --model-dir indicates the directory where the models are saved (i.e. the entire folder containing log.txt, the tensorboard file and prompt_learner/). --load-epoch tells the code to load the model saved at a specific epoch, like --load-epoch 50 for ImageNet (see the source code for more details).

For example, to evaluate CLIP + CoOp (M=16, end) on ImageNetV2, you can do

# Don't need to use rn5_ep50 here as no training is performed
bash eval.sh imagenetv2 rn50

The default setting is SHOTS=16. Feel free to modify the script.

Again, you can use parse_test_res.py to automate the calculation of average performance. This time you should append --test-log, e.g., python parse_test_res.py directory --test-log.

Zero-Shot CLIP

See CoOp/scripts/zeroshot.sh.

Linear Probe CLIP

Please move to lpclip/.

How to Cite CoOp

If you use this code in your research, please kindly cite the following paper

@article{zhou2021coop,
    title={Learning to Prompt for Vision-Language Models},
    author={Zhou, Kaiyang and Yang, Jingkang and Loy, Chen Change and Liu, Ziwei},
    journal={arXiv preprint arXiv:2109.01134},
    year={2021}
}
Owner
Kaiyang
Kaiyang
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022