Social Network Ads Prediction

Overview

Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services. One of the major benefits of this type of advertising is that advertisers can take advantage of the users’ demographic information and target their ads appropriately.Advantages are advertisers can reach users who are interested in their products, allows for detailed analysis and reporting, information gathered is real, not from statistical projections, does not access IP-addresses of the users.

Data

For this study, we collected data from trusted website. Data contains 5 columns.

UserID - Each person has a unique ID from which we can identify the person uniquely.

Gender - Person can male or female. This field is very important for our hypothesis.

Age - Age of the person. Because our product can be useful to some ages only.

EstimatedSalary - This column contains salary of a person as salary can affect the shopping of a person.

Correlation Matrix

As we can see from the correlation matrix, our matrix's features has no highly correlated variables.Most correlated features are Purchase and Age(0.62)

Confusion Matrix

I have use KNearestNeighbor model.Model results without Hyperparameter is:

Accuracy = 93.00

F1_score = 89.23

Owner
Khazar
Khazar
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022