中文无监督SimCSE Pytorch实现

Overview

A PyTorch implementation of unsupervised SimCSE

SimCSE: Simple Contrastive Learning of Sentence Embeddings


1. 用法

无监督训练

python train_unsup.py ./data/news_title.txt ./path/to/huggingface_pretrained_model

详细参数

usage: train_unsup.py [-h] [--pretrained PRETRAINED] [--model_out MODEL_OUT]
                      [--num_proc NUM_PROC] [--max_length MAX_LENGTH]
                      [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--lr LR]
                      [--tao TAO] [--device DEVICE]
                      [--display_interval DISPLAY_INTERVAL]
                      [--save_interval SAVE_INTERVAL] [--pool_type POOL_TYPE]
                      [--dropout_rate DROPOUT_RATE]
                      train_file

positional arguments:
  train_file            train text file

optional arguments:
  -h, --help            show this help message and exit
  --pretrained PRETRAINED
                        huggingface pretrained model (default: hfl/chinese-
                        bert-wwm-ext)
  --model_out MODEL_OUT
                        model output path (default: ./model)
  --num_proc NUM_PROC   dataset process thread num (default: 5)
  --max_length MAX_LENGTH
                        sentence max length (default: 100)
  --batch_size BATCH_SIZE
                        batch size (default: 64)
  --epochs EPOCHS       epochs (default: 2)
  --lr LR               learning rate (default: 1e-05)
  --tao TAO             temperature (default: 0.05)
  --device DEVICE       device (default: cuda)
  --display_interval DISPLAY_INTERVAL
                        display interval (default: 50)
  --save_interval SAVE_INTERVAL
                        save interval (default: 100)
  --pool_type POOL_TYPE
                        pool_type (default: cls)
  --dropout_rate DROPOUT_RATE
                        dropout_rate (default: 0.3)

相似文本检索测试

python test_unsup.py
query title:
基金亏损路未尽 后市看法仍偏谨慎

sim title:
基金亏损路未尽 后市看法仍偏谨慎
海通证券:私募对后市看法偏谨慎
连塑基本面不容乐观 后市仍有下行空间
基金谨慎看待后市行情
稳健投资者继续保持观望 市场走势还未明朗
下半年基金投资谨慎乐观
华安基金许之彦:下半年谨慎乐观
楼市主导 期指后市不容乐观
基金公司谨慎看多明年市
前期乐观预期被否 基金重归谨慎

STS-B数据集训练和测试

中文STS-B数据集,详情见这里

# 训练
python train_unsup.py ./data/STS-B/cnsd-sts-train_unsup.txt

# 验证
python eval_unsup.py
模型 STS-B dev STS-B test
hfl/chinese-bert-wwm-ext 0.3326 0.3209
simcse 0.7499 0.6909

与苏剑林的实验结果接近,BERT-P1是0.3465,SIMCSE是0.6904

2. 参考

Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Rhasspy 673 Dec 28, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022