pytorch implementation of trDesign

Overview

trdesign-pytorch

This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port of the trRosetta network was done by @lucidrains.

Figure 1: trDesign Architecture

Figure 1 of De novo protein design by deep network hallucination (p. 12, Anishchenko et al., CC-BY-ND)

Requirements

Requires python 3.6+

pip install matplotlib numpy torch

Usage (protein design):

  1. Edit src/config.py to set the experiment configuration.
  2. Run python design.py
  3. All results will be saved under results/

Design Configuration Options

  • Sequence length (int)
  • AA_weight (float): how strongly we want the amino acid type composition to be 'natural'
  • RM_AA (str): disable specific amino acid types
  • n_models (int): how many trRosetta model ensembles we want to use during the MCMC loop
  • sequence constraint (str): fix a subset of the sequence residues to specific amino acids
  • target_motif (path): optimize a sequence with a target motif provided as an .npz file
  • MCMC options

Usage (protein structure prediction):

python predict.py example.a3m
# or
python predict.py example.fasta

To get a .pdb from the resulting .npz you need to request the trRosetta package from the original authors.

Then you can run:

python trRosetta.py example.npz example.fasta output.pdb -w /tmp

References

@article {Yang1496,
  author = {Yang, Jianyi and Anishchenko, Ivan and Park, Hahnbeom and Peng, Zhenling and Ovchinnikov, Sergey and Baker, David},
  title = {Improved protein structure prediction using predicted interresidue orientations},
  year = {2020},
  doi = {10.1073/pnas.1914677117},
  URL = {https://www.pnas.org/content/117/3/1496},
  eprint = {https://www.pnas.org/content/117/3/1496.full.pdf},
  journal = {Proceedings of the National Academy of Sciences}
}
@article {Anishchenko2020.07.22.211482,
  author = {Anishchenko, Ivan and Chidyausiku, Tamuka M. and Ovchinnikov, Sergey and Pellock, Samuel J. and Baker, David},
  title = {De novo protein design by deep network hallucination},
  year = {2020},
  doi = {10.1101/2020.07.22.211482},
  URL = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482},
  eprint = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482.full.pdf},
  journal = {bioRxiv}
}
@article {Tischer2020.11.29.402743,
  author = {Tischer, Doug and Lisanza, Sidney and Wang, Jue and Dong, Runze and Anishchenko, Ivan and Milles, Lukas F. and Ovchinnikov, Sergey and Baker, David},
  title = {Design of proteins presenting discontinuous functional sites using deep learning},
  year = {2020},
  doi = {10.1101/2020.11.29.402743},
  URL = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743},
  eprint = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743.full.pdf},
  journal = {bioRxiv}
}
Owner
Learn Ventures Inc.
Learn Ventures Inc.
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022