Simulación con el método de Montecarlo para verificar ganancias con márgenes negativos.

Overview

Apliación del método Monte Carlo a un ejemplo que incluye márgenes negativos.

Por Marco A. de la Cruz

Importante

La información contenida en este ejemplo, así como el planteamiento son ficticios. Este trabajo tiene como finalidad ejemplificar el uso del método Monte Carlo y cómo este puede ser replicado para algùn uso concreto.

Lo contenido en este trabajo es de acceso libre, sin embargo, pido de la ayuda del lector para dar crédito al autor original si este es usado para otros trabajos o estudios.

Planteamiento del problema

Una empresa dedicada a la venta de joyería ha optado por una estrategia agresiva, para atraer mayor mercado algunos de los precios de ciertos modelos estarán por debajo de los costos de adquisición. El equipo de mercadeo estima un aumento de sus clientes y creen que las ventas tendrán un comportamiento de una distribución normal con un promedio de 1000 y una desviación estándar de 100 ($N(\mu = 1000, \sigma = 100)$).

Por otro lado se debe considerar que esta empresa tiene una alianza comercial con una tarjeta de descuentos, el equipo de mercadeo ha indicado que consideran que hay una probabilidad del 20% de un cliente se presente con una tarjeta de descuentos plata, la cual permitiría un descuento del 5% en cualquier producto y que hay una probabilidad del 10% de que un cliente se presente con una tarjeta de descuentos oro, que permitirá adquirir un producto con 10% de descuento.

Tarjeta de descuentos % que un cliente use la tarjeta Descuento en el precio final
TDD plata 20% (-)5%
TDD oro 10% (-)10%

Por último se compartió el porcentaje de ventas de cada modelo, y se estima que esa razón se mantendrá en los meses siguientes, por lo que se puede considerar como la probabilidad de que cada modelo sea vendida.

Toda esta información está contenida en el archivo Prices.xlsx, la primera columna el artículo, la segunda columna el precio de venta, la tercera columna el costo unitario, y la última la probabilidad de que ese modelo sea vendido.

Artículo Precio Costo Probabilidad
Item #1 $ 4 600.00 $ 4 830.00 2.79%
Item #2 $ 4 100.00 $ 4 080.00 4.70%
Item #3 $ 2 500.00 $ 1 575.00 8.26%
Item #4 $ 4 400.00 $ 4 004.00 5.78%
Item #5 $ 5 000.00 $ 3 600.00 9.71%
Item #6 $ 5 000.00 $ 5 350.00 6.60%
Item #7 $ 2 700.00 $ 1 998.00 7.13%
Item #8 $ 2 200.00 $ 2 068.00 0.39%
Item #9 $ 2 600.00 $ 2 288.00 5.94%
Item #10 $ 2 800.00 $ 3 080.00 2.48%
Item #11 $ 2 500.00 $ 2 800.00 2.32%
Item #12 $ 2 300.00 $ 2 553.00 6.98%
Item #13 $ 4 000.00 $ 3 800.00 8.48%
Item #14 $ 4 800.00 $ 2 928.00 0.69%
Item #15 $ 3 900.00 $ 3 550.00 1.98%
Item #16 $ 2 700.00 $ 2 322.00 3.18%
Item #17 $ 4 400.00 $ 3 784.00 6.36%
Item #18 $ 3 300.00 $ 3 105.00 8.46%
Item #19 $ 4 700.00 $ 3 478.00 3.69%
Item #20 $ 4 800.00 $ 3 840.00 4.08%

Para este ejemplo no se considerán otros costos (por ejemplo, costos fijos) más allá que los costos unitarios, además no se considerarán los impuestos. Esto con la finalidad de simplificar este ejercicio y dar a entender el funcionamiento del método Monte Carlo.

Para dar un poco más de profesionalidad al trabajo he optado por mostrar toda esta información en un archivo Latex, ya que como ejemplo esto puede ser empleado en un fomrsto estándar (como el que se usa para tesis y trabajos similares).

Explicación de cómo funciona el método Monte Carlo

Este es un método no determinista y se utiliza para que a través de valores probabilísticos se simule el comportamiento impredecible de la realidad con la generación de números semialeatorios.

Si bien es cierto que un mayor número de simulaciones deberían ser más parecidos a los cálculos obtenidos por métodos deterministas, es precisamente con este comportamiento con el que se pueden obtener datos extra como la variabilidad y obtener rangos de comportamiento.

Para este ejercicio específico, se utilizarán tres simulaciones en paralelo en doscientas pruebas diferentes. El primero indicará cuantas piezas se recibirán, como se mencionó anteriormente se utilizará una función beta, este primer número indicará cuantas veces se ejecutará la segunda simulación. La segunda simulación determinará qué dispositivo se ha recibido considerando un número semialeatorio continuo entre 0 y 1, y respecto a la función acumulada de los diferentes modelos indicará a qué modelo y gradación corresponde.

La tercera simulación determina a quién se venderá el equipo, la opción que mejor pague por el dispositivo tendrá una probabilidad del 60%, la segunda mejor opción tendrá una probabilidad del 30% y la tercera opción un 10%.

Se hará una operación aritmética del precio de venta de cada equipo menos el precio de adquisición y se registrará el total en una tabla.

Finalmente se tomarán todos los resultados de la tabla y podremos determinar los números estadísticos descriptivos y conocer el alcance del programa bajo dichas cantidades.

Para poder replicar el análisis en cualquier computadora con el mismo software, se utilizarán semillas en los métodos y funciones que requieran números aleatorios.


Due to the behavior of received Devices from the trade in program, it is believed that we will receive five hundred devices per month, however, in order for the simulation to consider scenarios where sales are slightly lower than planned, it is proposed two hundred simulations where a random number of pieces of the beta function $X \sim Beta(\alpha= 4, \beta = 5)$ with location 400 and scale of 200 (image 1). This distribution has the characteristic of having a mean ($\overline{X}$) of 488.03, a median ($\widetilde{X}$) of 488.89 and a standard variation ($\sigma$) of 31.43.

Image 1. Beta Function for received devices.Image 1

Analytics has determined that the equipment reception will have a distribution as indicated in table 1. For simulation issues, each received equipment will generate a semi-random number between 0 and 1 to simulate the grade of the device received, only in the event that a unit does not have a price available for grade 3, the price of grade 2 will be taken.

Table 1. Probability of receiving different grade devices.

Grading Probability of being received
Grade 1 80.00%
Grade 2 15.24%
Grade 3 4.76%

Due to the above, a file containing the probabilities of each device of being acquired by the trade-in program has been restructured, separated into three main columns: Model, grading and probability. The probability has been calculated as follows. $$ p_{model - grade}=p_{model}\cdot p_{grading} $$ An example of the above is the Galaxy Note 10 model, which in the model mix has a probability of receiving it of 0.6%, this amount would be multiplied by each of the probabilities of each grade of being received (table 1). $$ p_{Note10-Grade1}=0.6% \cdot 80.00% = 0.4800%\ p_{Note10-Grade2}=0.6% \cdot 15.24% = 0.0914%\ p_{Note10-Grade3}=0.6% \cdot 4.76% = 0.0286% $$ With the above we can affirm the following, where:

  • $p_{i \alpha}$ is the probability of each model of grade 1 to being traded.

  • $p_{i \beta}$ is the probability of each model of grade 2 to being traded.

  • $p_{i\gamma}$ Is the probability of each model of grade 3 to being traded.

  • $n$ is the quantity of models on the list.

$$ \sum_{i=1}^{n} ( p_{i \alpha} + p_{i \beta} + p_{i \gamma} ) = 1.00 $$

Since three files have been manipulated, these will be in the annexes, only details of what is contained in each column will be given.

Probabilities.xlsx (table 2) indicates the probability that a device will be acquired in the trade-in program by model and grading.

Table 2. Description in Probabilities.xlsx.

Column name Description
Device name Model name.
Model Mix Probability of receiving this model in the trade-in program.
Grade Model grade.
Probability Probability of receiving this model with the corresponding grading in the trade-in program.

Buying price.xlsx (table 3) indicates the purchase prices by model and grading.

Table 3. Description in Buying price.xlsx.

Column name Description
Device name Model name.
Grading Model grade.
Buying price Acquisition price of the model and corresponding grading.

Aggregators prices.xlsx (table 4) indicates the prices at which the equipment will be sold, in this specific case it will be considered that 60% of the collected equipment will be sold to the best option, 30% to the second highest bidder and 10 % to the highest bidder.

Table 4. Aggregators prices.xlsx.

Column name Description
Device name Model name.
Grade Model grade.
Selling price 1 Maximum sale price to aggregators for the model and grading indicated.
Selling price 2 Second highest selling price to aggregators for the model and grading indicated.
Selling price 3 Third highest selling price to aggregators for the designated model and grading.

Explanation how Monte Carlo method works

This is a non-deterministic method and it is used so that through probabilistic values the unpredictable behavior of reality is simulated with the generation of semi-random numbers.

Although it is true that a greater number of simulations should be more similar to the calculations obtained by deterministic methods, it is precisely with this behavior that extra data such as variability can be obtained and behavior ranges obtained.

For this specific exercise, three simulations will be used in parallel in two hundred different tests. The first will indicate how many pieces will be received, as previously mentioned a beta function will be used, this first number will indicate how many times the second simulation will be executed. The second simulation will determine which device has been received considering a continuous semi-random number between 0 and 1, and with respect to the accumulated function of the different models it will indicate which model and grading it corresponds to.

The third simulation determines to whom the equipment will be sold, the option that pays the best for the device will have a probability of 60%, the second best option will have a probability of 30% and the third option a 10%.

An arithmetic operation will be made of the sale price of each equipment minus the acquisition price and the total will be recorded in a table.

Finally, all the results of the table will be taken and we will be able to determine the descriptive statistics numbers and know the scope of the program under said quantities.

In order to be able to replicate the analysis on any computer with the same software, seeds will be used in the methods and functions that require random numbers.

Analysis using Python 3.X

Step 1

Annexes

Annex 1 Creation of image 1 using python 3.X.

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
from matplotlib import ticker

x1 = np.arange(400, 601)
y1 = st.beta(4, 5, loc=400, scale=200).pdf(x1)

fig, ax = plt.subplots(figsize=(6,4))
plt.style.use('bmh')
ax.bar(x, y*100, color='grey', width=3)
ax.set_xlabel('Devices that can be received')
ax.set_ylabel('Probability of receiving those devices')
ax.yaxis.set_major_formatter(ticker.PercentFormatter())

![image-20211209231942028](../../../../../Library/Application Support/typora-user-images/image-20211209231942028.png)

Backend for Indipe client

Betsushi Betsu (別), the japanese word meaning "another" and Shiharai (支払い) meaning "payment". Hence the name Betsushi was derived. Introduction This i

Sudodevs 3 Feb 09, 2022
A pypi package that helps in generating discord bots.

A pypi package that helps in generating discord bots.

KlevrHQ 3 Nov 17, 2021
Bot-moderator for Telegram group chats

Project title A little info about your project and/ or overview that explains what the project is about. 🌟 Hello everyone! This is the repository of

Maxim Zavalniuk 6 Nov 01, 2022
Official API documentation for Highrise

Highrise API The Highrise API is implemented as vanilla XML over HTTP using all four verbs (GET/POST/PUT/DELETE). Every resource, like Person, Deal, o

Basecamp 128 Dec 06, 2022
Complete portable pipeline for masking of Aadhaar Number adhering to Govt. Privacy Guidelines.

Aadhaar Number Masking Pipeline Implementation of a complete pipeline that masks the Aadhaar Number in given images to adhere to Govt. of India's Priv

1 Nov 06, 2021
Python API Client for Close

Close API A convenient Python wrapper for the Close API. API docs: http://developer.close.com Support: Close 56 Nov 30, 2022

Useful tools for building interactions in Python

discord-interactions-python Types and helper functions for Discord Interactions webhooks. Installation Available via pypi: pip install discord-interac

Discord 77 Dec 07, 2022
Eva Maria Bot With Python

Eva Maria Bot Features Auto Filter Manual Filter IMDB Admin Commands Broadcast Index IMDB search Inline Search Random pics ids and User info Stats, Us

Aadhi 3 Jan 06, 2022
A Flask & Twilio Secret Santa app.

🎄 ✨ Secret Santa Twilio ✨ 📱 A contactless Secret Santa game built with Python, Flask and Twilio! Prerequisites 📝 A Twilio account. Sign up here ngr

Sangeeta Jadoonanan 5 Dec 23, 2021
Python3 program to control Elgato Ring Light on your local network without Elgato's Control Center software

Elgato Light Controller I'm really happy with my Elgato Key Light from an illumination perspective. However, their control software has been glitchy f

Jeff Tarr 14 Nov 16, 2022
A plugin for modmail-bot for stealing,making ,etc emojis

EmojiPlugin for the Modmail-bot My first plugin .. its very Basic I will make more and better too Only 3 commands for now emojiadd-supports .jpg, .png

1 Dec 28, 2021
🤖 Automated follow/unfollow bot for GitHub. Uses GitHub API. Written in python.

GitHub Follow Bot Table of Contents Disclaimer How to Use Install requirements Authenticate Get a GitHub Personal Access Token Add your GitHub usernam

João Correia 37 Dec 27, 2022
A Simple, LightWeight, Statically-Typed Python3 API wrapper for GogoAnime.

AniKimi API A Simple, LightWeight, Statically-Typed Python3 API wrapper for GogoAnime The v2 of gogoanimeapi (depreciated) Made with JavaScript and Py

17 Dec 09, 2022
A wordwolf bot with python

ワードウルフBot requirements.txtから依存ライブラリをインストールしてください discordのトークン/Google spread sheetのキー/Sheetの名前を.envに書き込んでください DISCORD_TOKEN SHEET_KEY SHEET_NAME また、.sh

Kato 2 Dec 11, 2022
PyFacebook

== PyFacebook == PyFacebook is a Python client library for the Facebook API. Samuel Cormier-Iijima ( Samuel Cormier-Iijima 573 Dec 20, 2022

A stable telegram bot to get restricted messages with custom thumbnail support

Save restricted content Bot A stable telegram bot to get restricted messages with custom thumbnail support

DEVANSH 3 Feb 09, 2022
An inline Telegram bot to keep your private messages hidden from prying eyes.

Hide This Bot Hide This Bot is an inline Telegram bot to keep your private messages hidden from prying eyes.     How do I host it? Here is a brief gui

41 Dec 02, 2022
Discord Online Account Forever

💠 Discord-Online-Account-Forever Discord Online Account Forever 📸 Tutorial Token Discord NEVER SHARE YOUR TOKEN Installation Replit 🧿 Replit : Here

nimaisox 2 Nov 28, 2021
A discord.py code generator program. Compatible with both linux and windows.

Astro-Cord A discord.py code generator program. Compatible with both linux and windows. About This is a program made to make discord.py bot developmen

Astro Inc. 2 Dec 23, 2021
Bancos de Dados Relacionais (SQL) na AWS com Amazon RDS.

Bancos de Dados Relacionais (SQL) na AWS com Amazon RDS Explorando o Amazon RDS, um serviço de provisionamente e gerenciamento de banco de dados relac

Lucas Magalhães 1 Dec 05, 2021