RTSeg: Real-time Semantic Segmentation Comparative Study

Overview

Real-time Semantic Segmentation Comparative Study

The repository contains the official TensorFlow code used in our papers:

Description

Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the     different design choices for segmentation. In RTSeg, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The code and the experimental results are presented on the CityScapes dataset for urban scenes.



Models

Encoder Skip U-Net DilationV1 DilationV2
VGG-16 Yes Yes Yes No
ResNet-18 Yes Yes Yes No
MobileNet Yes Yes Yes Yes
ShuffleNet Yes Yes Yes Yes

NOTE: The rest of the pretrained weights for all the implemented models will be released soon. Stay in touch for the updates.

Reported Results

Test Set

Model GFLOPs Class IoU Class iIoU Category IoU Category iIoU
SegNet 286.03 56.1 34.2 79.8 66.4
ENet 3.83 58.3 24.4 80.4 64.0
DeepLab - 70.4 42.6 86.4 67.7
SkipNet-VGG16 - 65.3 41.7 85.7 70.1
ShuffleSeg 2.0 58.3 32.4 80.2 62.2
SkipNet-MobileNet 6.2 61.5 35.2 82.0 63.0

Validation Set

Encoder Decoder Coarse mIoU
MobileNet SkipNet No 61.3
ShuffleNet SkipNet No 55.5
ResNet-18 UNet No 57.9
MobileNet UNet No 61.0
ShuffleNet UNet No 57.0
MobileNet Dilation No 57.8
ShuffleNet Dilation No 53.9
MobileNet SkipNet Yes 62.4
ShuffleNet SkipNet Yes 59.3

** GFLOPs is computed on image resolution 360x640. However, the mIOU(s) are computed on the official image resolution required by CityScapes evaluation script 1024x2048.**

** Regarding Inference time, issue is reported here. We were not able to outperform the reported inference time from ENet architecture it could be due to discrepencies in the optimization we perform. People are welcome to improve on the optimization method we're using.

Usage

  1. Download the weights, processed data, and trained meta graphs from here
  2. Extract pretrained_weights.zip
  3. Extract full_cityscapes_res.zip under data/
  4. Extract unet_resnet18.zip under experiments/

Run

The file named run.sh provide a good example for running different architectures. Have a look at this file.

Examples to the running command in run.sh file:

python3 main.py --load_config=[config_file_name].yaml [train/test] [Trainer Class Name] [Model Class Name]
  • Remove comment from run.sh for running fcn8s_mobilenet on the validation set of cityscapes to get its mIoU. Our framework evaluation will produce results lower than the cityscapes evaluation script by small difference, for the final evaluation we use the cityscapes evaluation script. UNet ResNet18 should have 56% on validation set, but with cityscapes script we got 57.9%. The results on the test set for SkipNet-MobileNet and SkipNet-ShuffleNet are publicly available on the Cityscapes Benchmark.
python3 main.py --load_config=unet_resnet18_test.yaml test Train LinkNET
  • To measure running time, run in inference mode.
python3 main.py --load_config=unet_resnet18_test.yaml inference Train LinkNET
  • To run on different dataset or model, take one of the configuration files such as: config/experiments_config/unet_resnet18_test.yaml and modify it or create another .yaml configuration file depending on your needs.

NOTE: The current code does not contain the optimized code for measuring inference time, the final code will be released soon.

Main Dependencies

Python 3 and above
tensorflow 1.3.0/1.4.0
numpy 1.13.1
tqdm 4.15.0
matplotlib 2.0.2
pillow 4.2.1
PyYAML 3.12

All Dependencies

pip install -r [requirements_gpu.txt] or [requirements.txt]

Citation

If you find RTSeg useful in your research, please consider citing our work:

@ARTICLE{2018arXiv180302758S,
   author = {{Siam}, M. and {Gamal}, M. and {Abdel-Razek}, M. and {Yogamani}, S. and
    {Jagersand}, M.},
    title = "{RTSeg: Real-time Semantic Segmentation Comparative Study}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.02758},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180302758S},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

If you find ShuffleSeg useful in your research, please consider citing it as well:

@ARTICLE{2018arXiv180303816G,
   author = {{Gamal}, M. and {Siam}, M. and {Abdel-Razek}, M.},
    title = "{ShuffleSeg: Real-time Semantic Segmentation Network}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.03816},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180303816G},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Related Project

Real-time Motion Segmentation using 2-stream shuffleseg Code

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022