RTSeg: Real-time Semantic Segmentation Comparative Study

Overview

Real-time Semantic Segmentation Comparative Study

The repository contains the official TensorFlow code used in our papers:

Description

Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the     different design choices for segmentation. In RTSeg, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The code and the experimental results are presented on the CityScapes dataset for urban scenes.



Models

Encoder Skip U-Net DilationV1 DilationV2
VGG-16 Yes Yes Yes No
ResNet-18 Yes Yes Yes No
MobileNet Yes Yes Yes Yes
ShuffleNet Yes Yes Yes Yes

NOTE: The rest of the pretrained weights for all the implemented models will be released soon. Stay in touch for the updates.

Reported Results

Test Set

Model GFLOPs Class IoU Class iIoU Category IoU Category iIoU
SegNet 286.03 56.1 34.2 79.8 66.4
ENet 3.83 58.3 24.4 80.4 64.0
DeepLab - 70.4 42.6 86.4 67.7
SkipNet-VGG16 - 65.3 41.7 85.7 70.1
ShuffleSeg 2.0 58.3 32.4 80.2 62.2
SkipNet-MobileNet 6.2 61.5 35.2 82.0 63.0

Validation Set

Encoder Decoder Coarse mIoU
MobileNet SkipNet No 61.3
ShuffleNet SkipNet No 55.5
ResNet-18 UNet No 57.9
MobileNet UNet No 61.0
ShuffleNet UNet No 57.0
MobileNet Dilation No 57.8
ShuffleNet Dilation No 53.9
MobileNet SkipNet Yes 62.4
ShuffleNet SkipNet Yes 59.3

** GFLOPs is computed on image resolution 360x640. However, the mIOU(s) are computed on the official image resolution required by CityScapes evaluation script 1024x2048.**

** Regarding Inference time, issue is reported here. We were not able to outperform the reported inference time from ENet architecture it could be due to discrepencies in the optimization we perform. People are welcome to improve on the optimization method we're using.

Usage

  1. Download the weights, processed data, and trained meta graphs from here
  2. Extract pretrained_weights.zip
  3. Extract full_cityscapes_res.zip under data/
  4. Extract unet_resnet18.zip under experiments/

Run

The file named run.sh provide a good example for running different architectures. Have a look at this file.

Examples to the running command in run.sh file:

python3 main.py --load_config=[config_file_name].yaml [train/test] [Trainer Class Name] [Model Class Name]
  • Remove comment from run.sh for running fcn8s_mobilenet on the validation set of cityscapes to get its mIoU. Our framework evaluation will produce results lower than the cityscapes evaluation script by small difference, for the final evaluation we use the cityscapes evaluation script. UNet ResNet18 should have 56% on validation set, but with cityscapes script we got 57.9%. The results on the test set for SkipNet-MobileNet and SkipNet-ShuffleNet are publicly available on the Cityscapes Benchmark.
python3 main.py --load_config=unet_resnet18_test.yaml test Train LinkNET
  • To measure running time, run in inference mode.
python3 main.py --load_config=unet_resnet18_test.yaml inference Train LinkNET
  • To run on different dataset or model, take one of the configuration files such as: config/experiments_config/unet_resnet18_test.yaml and modify it or create another .yaml configuration file depending on your needs.

NOTE: The current code does not contain the optimized code for measuring inference time, the final code will be released soon.

Main Dependencies

Python 3 and above
tensorflow 1.3.0/1.4.0
numpy 1.13.1
tqdm 4.15.0
matplotlib 2.0.2
pillow 4.2.1
PyYAML 3.12

All Dependencies

pip install -r [requirements_gpu.txt] or [requirements.txt]

Citation

If you find RTSeg useful in your research, please consider citing our work:

@ARTICLE{2018arXiv180302758S,
   author = {{Siam}, M. and {Gamal}, M. and {Abdel-Razek}, M. and {Yogamani}, S. and
    {Jagersand}, M.},
    title = "{RTSeg: Real-time Semantic Segmentation Comparative Study}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.02758},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180302758S},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

If you find ShuffleSeg useful in your research, please consider citing it as well:

@ARTICLE{2018arXiv180303816G,
   author = {{Gamal}, M. and {Siam}, M. and {Abdel-Razek}, M.},
    title = "{ShuffleSeg: Real-time Semantic Segmentation Network}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.03816},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180303816G},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Related Project

Real-time Motion Segmentation using 2-stream shuffleseg Code

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022