Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

Overview

CRNN_Tensorflow

This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition". You can refer to the paper for architecture details. Thanks to the author Baoguang Shi.

The model consists of a CNN stage extracting features which are fed to an RNN stage (Bi-LSTM) and a CTC loss.

Installation

This software has been developed on Ubuntu 16.04(x64) using python 3.5 and TensorFlow 1.12. Since it uses some recent features of TensorFlow it is incompatible with older versions.

The following methods are provided to install dependencies:

Conda

You can create a conda environment with the required dependencies using:

conda env create -f crnntf-env.yml

Pip

Required packages may be installed with

pip3 install -r requirements.txt

Testing the pre-trained model

Evaluate the model on the synth90k dataset

In this repo you will find a model pre-trained on the Synth 90kdataset. When the tfrecords file of synth90k dataset has been successfully generated you may evaluated the model by the following script

The pretrained crnn model weights on Synth90k dataset can be found here

python tools/evaluate_shadownet.py --dataset_dir PATH/TO/YOUR/DATASET_DIR 
--weights_path PATH/TO/YOUR/MODEL_WEIGHTS_PATH
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH
--process_all 1 --visualize 1

If you set visualize true the expected output during evaluation process is

evaluate output

After all the evaluation process is done you should see some thing like this:

evaluation_result

The model's main evaluation index are as follows:

Test Dataset Size: 891927 synth90k test images

Per char Precision: 0.974325 without average weighted on each class

Full sequence Precision: 0.932981 without average weighted on each class

For Per char Precision:

single_label_accuracy = correct_predicted_char_nums_of_single_sample / single_label_char_nums

avg_label_accuracy = sum(single_label_accuracy) / label_nums

For Full sequence Precision:

single_label_accuracy = 1 if the prediction result is exactly the same as label else 0

avg_label_accuracy = sum(single_label_accuracy) / label_nums

Part of the confusion matrix of every single char looks like this:

evaluation_confusion_matrix

Test the model on the single image

If you want to test a single image you can do it with

python tools/test_shadownet.py --image_path PATH/TO/IMAGE 
--weights_path PATH/TO/MODEL_WEIGHTS
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH

Test example images

Example test_01.jpg

Example image1

Example test_02.jpg

Example image2

Example test_03.jpg

Example image3

Training your own model

Data preparation

Download the whole synth90k dataset here And extract all th files into a root dir which should contain several txt file and several folders filled up with pictures. Then you need to convert the whole dataset into tensorflow records as follows

python tools/write_tfrecords 
--dataset_dir PATH/TO/SYNTH90K_DATASET_ROOT_DIR
--save_dir PATH/TO/TFRECORDS_DIR

During converting all the source image will be scaled into (32, 100)

Training

For all the available training parameters, check global_configuration/config.py, then train your model with

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--char_dict_path PATH/TO/CHAR_DICT_PATH 
--ord_map_dict_path PATH/TO/ORD_MAP_PATH

If you wish, you can add more metrics to the training progress messages with --decode_outputs 1, but this will slow training down. You can also continue the training process from a snapshot with

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--weights_path PATH/TO/YOUR/PRETRAINED_MODEL_WEIGHTS
--char_dict_path PATH/TO/CHAR_DICT_PATH --ord_map_dict_path PATH/TO/ORD_MAP_PATH

If you has multiple gpus in your local machine you may use multiple gpu training to access a larger batch size input data. This will be supported as follows

python tools/train_shadownet.py --dataset_dir PATH/TO/YOUR/TFRECORDS
--char_dict_path PATH/TO/CHAR_DICT_PATH --ord_map_dict_path PATH/TO/ORD_MAP_PATH
--multi_gpus 1

The sequence distance is computed by calculating the distance between two sparse tensors so the lower the accuracy value is the better the model performs. The training accuracy is computed by calculating the character-wise precision between the prediction and the ground truth so the higher the better the model performs.

Tensorflow Serving

Thanks for Eldon's contribution of tensorflow service function:)

Since tensorflow model server is a very powerful tools to serve the DL model in industry environment. Here's a script for you to convert the checkpoints model file into tensorflow saved model which can be used with tensorflow model server to serve the CRNN model. If you can not run the script normally you may need to check if the checkpoint file path is correct in the bash script.

bash tfserve/export_crnn_saved_model.sh

To start the tensorflow model server you may check following script

bash tfserve/run_tfserve_crnn_gpu.sh

There are two different ways to test the python client of crnn model. First you may test the server via http/rest request by running

python tfserve/crnn_python_client_via_request.py ./data/test_images/test_01.jpg

Second you may test the server via grpc by running

python tfserve/crnn_python_client_via_grpc.py

Experiment

The original experiment run for 2000000 epochs, with a batch size of 32, an initial learning rate of 0.01 and exponential decay of 0.1 every 500000 epochs. During training the train loss dropped as follows

Training loss

The val loss dropped as follows

Validation_loss

2019.3.27 Updates

I have uploaded a newly trained crnn model on chinese dataset which can be found here. Sorry for not knowing the owner of the dataset. But thanks for his great work. If someone knows it you're welcome to let me know. The pretrained weights can be found here

Before start training you may need reorgnize the dataset's label information according to the synth90k dataset's format if you want to use the same data feed pip line mentioned above. Now I have reimplemnted a more efficient tfrecords writer which will accelerate the process of generating tfrecords file. You may refer to the code for details. Some information about training is listed bellow:

image size: (280, 32)

classes nums: 5824 without blank

sequence length: 70

training sample counts: 2733004

validation sample counts: 364401

testing sample counts: 546601

batch size: 32

training iter nums: 200000

init lr: 0.01

Test example images

Example test_01.jpg

Example image1

Example test_02.jpg

Example image2

Example test_03.jpg

Example image3

training tboard file

Training loss

The val loss dropped as follows

Validation_loss

2019.4.10 Updates

Add a small demo to recognize chinese pdf using the chinese crnn model weights. If you want to have a try you may follow the command:

cd CRNN_ROOT_REPO
python tools/recongnize_chinese_pdf.py -c ./data/char_dict/char_dict_cn.json 
-o ./data/char_dict/ord_map_cn.json --weights_path model/crnn_chinese/shadownet.ckpt 
--image_path data/test_images/test_pdf.png --save_path pdf_recognize_result.txt

You should see the same result as follows:

The left image is the recognize result displayed on console and the right image is the origin pdf image.

recognize_result_console

The left image is the recognize result written in local file and the right image is the origin pdf image. recognize_result_file

TODO

  • Add new model weights trained on the whole synth90k dataset
  • Add multiple gpu training scripts
  • Add new pretrained model on chinese dataset
  • Add an online toy demo
  • Add tensorflow service script

Acknowledgement

Please cite my repo CRNN_Tensorflow if you use it.

Contact

Scan the following QR to disscuss :) qr

Owner
MaybeShewill-CV
Engineer from Baidu
MaybeShewill-CV
Select range and every time the screen changes, OCR is activated.

ASOCR(Auto Screen OCR) Select range and every time you press Space key, OCR is activated. 範囲を選ぶと、あなたがスペースキーを押すたびに、画面が変わる度にOCRが起動します。 usage1: simple OC

1 Feb 13, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
virtual mouse which can copy files, close tabs and many other features !

AI Virtual Mouse Controller Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip loca

Diwas Pandey 23 Oct 05, 2021
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023