Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Overview

Human Performance Capture from Monocular Video in the Wild

Paper | Video | Project Page

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild. We propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses, without any additional input.

If you find our code or paper useful, please cite as

@inproceedings{guo2021human,
  title={Human Performance Capture from Monocular Video in the Wild},
  author={Guo, Chen and Chen, Xu and Song, Jie and Hilliges, Otmar},
  booktitle={2021 International Conference on 3D Vision (3DV)},
  pages={889--898},
  year={2021},
  organization={IEEE}
}

Quick Start

CLone this repo:

git clone https://github.com/MoyGcc/hpcwild.git
cd  hpcwild
conda env create -f environment.yml
conda activate hpcwild

Additional Dependencies:

  1. Kaolin 0.1.0 (https://github.com/NVIDIAGameWorks/kaolin)
  2. MPI mesh library (https://github.com/MPI-IS/mesh)
  3. torch-mesh-isect (https://github.com/vchoutas/torch-mesh-isect)

Download SMPL models (1.0.0 for Python 2.7 (10 shape PCs)) and move them to the corresponding places:

mkdir lib/smpl/smpl_model/
mv /path/to/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_FEMALE.pkl
mv /path/to/smpl/models/basicmodel_m_lbs_10_207_0_v1.0.0.pkl smpl_rendering/smpl_model/SMPL_MALE.pkl

Download checkpoints for external modules:

wget https://download.01.org/opencv/openvino_training_extensions/models/human_pose_estimation/checkpoint_iter_370000.pth
mv /path/to/checkpoint_iter_370000.pth external/lightweight-human-pose-estimation.pytorch/checkpoint_iter_370000.pth

wget https://dl.fbaipublicfiles.com/pifuhd/checkpoints/pifuhd.pt pifuhd.pt 
mv /path/to/pifuhd.pt external/pifuhd/checkpoints/pifuhd.pt

Download IPNet weights: https://datasets.d2.mpi-inf.mpg.de/IPNet2020/IPNet_p5000_01_exp_id01.zip
unzip IPNet_p5000_01_exp_id01.zip
mv /path/to/IPNet_p5000_01_exp_id01 registration/experiments/IPNet_p5000_01_exp_id01

gdown --id 1mcr7ALciuAsHCpLnrtG_eop5-EYhbCmz -O modnet_photographic_portrait_matting.ckpt
mv /path/to/modnet_photographic_portrait_matting.ckpt external/MODNet/pretrained/modnet_photographic_portrait_matting.ckpt

Test on 3DPW dataset

Download 3DPW dataset

  1. modify the dataset_path in test.conf.
  2. run bash mesh_recon.sh to obtain the rigid body shape.
  3. run bash registration.sh to register a SMPL+D model to the rigid human body.
  4. run bash tracking.sh to capture the human performance temporally.

Test on your own video

  1. run OpenPose to obtain the 2D keypoints.
  2. run LGD to acquire the initial 3D poses.
  3. run MODNet to extract sihouettes.

Acknowledgement

We use the code in PIFuHD for the rigid body construction and adapt IPNet for human model registration. We use off-the-shelf methods OpenPose and MODNet for the extraction of 2D keypoints and sihouettes. We sincerely thank these authors for their awesome work.

Owner
Chen Guo
Chen Guo
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023