AI pipelines for Nvidia Jetson Platform

Overview

Jetson Multicamera Pipelines

Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project:

  • Builds a typical multi-camera pipeline, i.e. N×(capture)->preprocess->batch->DNN-> <<your application logic here>> ->encode->file I/O + display. Uses gstreamer and deepstream under-the-hood.
  • Gives programatic acces to configure the pipeline in python via jetmulticam package.
  • Utilizes Nvidia HW accleration for minimal CPU usage. For example, you can perform object detection in real-time on 6 camera streams using as little as 16.5% CPU. See benchmarks below for details.

Demos

You can easily build your custom logic in python by accessing image data (via np.array), as well object detection results. See examples of person following below:

DashCamNet (DLA0) + PeopleNet (DLA1) on 3 camera streams.

We have 3 intependent cameras with ~270° field of view. Red Boxes correspond to DashCamNet detections, green ones to PeopleNet. The PeopleNet detections are used to perform person following logic.

demo_8_follow_me.mp4

PeopleNet (GPU) on 3 cameras streams.

Robot is operated in manual mode.

demo_9_security_nvidia.mp4

DashCamNet (GPU) on 3 camera streams.

Robot is operated in manual mode.

demo_1_fedex_driver.mp4

(All demos are performed in real-time onboard Nvidia Jetson Xavier NX)

Quickstart

Install:

git clone https://github.com/NVIDIA-AI-IOT/jetson-multicamera-pipelines.git
cd jetson-multicamera-pipelines
bash scripts/install-dependencies.sh
pip3 install .

Run example with your cameras:

source scripts/env_vars.sh 
cd examples
python3 example.py

Usage example

import time
from jetmulticam import CameraPipelineDNN
from jetmulticam.models import PeopleNet, DashCamNet

if __name__ == "__main__":

    pipeline = CameraPipelineDNN(
        cameras=[2, 5, 8],
        models=[
            PeopleNet.DLA1,
            DashCamNet.DLA0,
            # PeopleNet.GPU
        ],
        save_video=True,
        save_video_folder="/home/nx/logs/videos",
        display=True,
    )

    while pipeline.running():
        arr = pipeline.images[0] # np.array with shape (1080, 1920, 3), i.e. (1080p RGB image)
        dets = pipeline.detections[0] # Detections from the DNNs
        time.sleep(1/30)

Benchmarks

# Scenario # cams CPU util.
(jetmulticam)
CPU util.
(nvargus-deamon)
CPU
total
GPU % EMC util % Power draw Inference Hardware
1. 1xGMSL -> 2xDNNs + disp + encode 1 5.3% 4% 9.3% <3% 57% 8.5W DLA0: PeopleNet DLA1: DashCamNet
2. 2xGMSL -> 2xDNNs + disp + encode 2 7.2% 7.7% 14.9% <3% 62% 9.4W DLA0: PeopleNet DLA1: DashCamNet
3. 3xGMSL -> 2xDNNs + disp + encode 3 9.2% 11.3% 20.5% <3% 68% 10.1W DLA0: PeopleNet DLA1: DashCamNet
4. Same as #3 with CPU @ 1.9GHz 3 7.5% 9.0% <3% 68% 10.4w DLA0: PeopleNet DLA1: DashCamNet
5. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 9.5% 11.3% 20.8% <3% 45% 9.1W DLA0: PeopleNet (interval=1) DLA1: DashCamNet (interval=1)
6. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 8.3% 11.3% 19.6% <3% 25% 7.5W DLA0: PeopleNet (interval=6) DLA1: DashCamNet (interval=6)
7. 3xGMSL -> DNN + disp + encode 5 10.3% 12.8% 23.1% 99% 25% 15W GPU: PeopleNet

Notes:

  • All figures are in 15W 6 core mode. To reproduce do: sudo nvpmodel -m 2; sudo jetson_clocks;
  • Test platform: Jetson Xavier NX and XNX Box running JetPack v4.5.1
  • The residual GPU usage in DLA-accelerated nets is caused by Sigmoid activations being computed with CUDA backend. Remaining layers are computed on DLA.
  • CPU usage will vary depending on factors such as camera resolution, framerate, available video formats and driver implementation.

More

Supported models / acceleratorss

pipeline = CameraPipelineDNN(
    cam_ids = [0, 1, 2]
    models=[
        models.PeopleNet.DLA0,
        models.PeopleNet.DLA1,
        models.PeopleNet.GPU,
        models.DashCamNet.DLA0,
        models.DashCamNet.DLA1,
        models.DashCamNet.GPU
        ]
    # ...
)
Owner
NVIDIA AI IOT
NVIDIA AI IOT
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023