AI pipelines for Nvidia Jetson Platform

Overview

Jetson Multicamera Pipelines

Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project:

  • Builds a typical multi-camera pipeline, i.e. N×(capture)->preprocess->batch->DNN-> <<your application logic here>> ->encode->file I/O + display. Uses gstreamer and deepstream under-the-hood.
  • Gives programatic acces to configure the pipeline in python via jetmulticam package.
  • Utilizes Nvidia HW accleration for minimal CPU usage. For example, you can perform object detection in real-time on 6 camera streams using as little as 16.5% CPU. See benchmarks below for details.

Demos

You can easily build your custom logic in python by accessing image data (via np.array), as well object detection results. See examples of person following below:

DashCamNet (DLA0) + PeopleNet (DLA1) on 3 camera streams.

We have 3 intependent cameras with ~270° field of view. Red Boxes correspond to DashCamNet detections, green ones to PeopleNet. The PeopleNet detections are used to perform person following logic.

demo_8_follow_me.mp4

PeopleNet (GPU) on 3 cameras streams.

Robot is operated in manual mode.

demo_9_security_nvidia.mp4

DashCamNet (GPU) on 3 camera streams.

Robot is operated in manual mode.

demo_1_fedex_driver.mp4

(All demos are performed in real-time onboard Nvidia Jetson Xavier NX)

Quickstart

Install:

git clone https://github.com/NVIDIA-AI-IOT/jetson-multicamera-pipelines.git
cd jetson-multicamera-pipelines
bash scripts/install-dependencies.sh
pip3 install .

Run example with your cameras:

source scripts/env_vars.sh 
cd examples
python3 example.py

Usage example

import time
from jetmulticam import CameraPipelineDNN
from jetmulticam.models import PeopleNet, DashCamNet

if __name__ == "__main__":

    pipeline = CameraPipelineDNN(
        cameras=[2, 5, 8],
        models=[
            PeopleNet.DLA1,
            DashCamNet.DLA0,
            # PeopleNet.GPU
        ],
        save_video=True,
        save_video_folder="/home/nx/logs/videos",
        display=True,
    )

    while pipeline.running():
        arr = pipeline.images[0] # np.array with shape (1080, 1920, 3), i.e. (1080p RGB image)
        dets = pipeline.detections[0] # Detections from the DNNs
        time.sleep(1/30)

Benchmarks

# Scenario # cams CPU util.
(jetmulticam)
CPU util.
(nvargus-deamon)
CPU
total
GPU % EMC util % Power draw Inference Hardware
1. 1xGMSL -> 2xDNNs + disp + encode 1 5.3% 4% 9.3% <3% 57% 8.5W DLA0: PeopleNet DLA1: DashCamNet
2. 2xGMSL -> 2xDNNs + disp + encode 2 7.2% 7.7% 14.9% <3% 62% 9.4W DLA0: PeopleNet DLA1: DashCamNet
3. 3xGMSL -> 2xDNNs + disp + encode 3 9.2% 11.3% 20.5% <3% 68% 10.1W DLA0: PeopleNet DLA1: DashCamNet
4. Same as #3 with CPU @ 1.9GHz 3 7.5% 9.0% <3% 68% 10.4w DLA0: PeopleNet DLA1: DashCamNet
5. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 9.5% 11.3% 20.8% <3% 45% 9.1W DLA0: PeopleNet (interval=1) DLA1: DashCamNet (interval=1)
6. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 8.3% 11.3% 19.6% <3% 25% 7.5W DLA0: PeopleNet (interval=6) DLA1: DashCamNet (interval=6)
7. 3xGMSL -> DNN + disp + encode 5 10.3% 12.8% 23.1% 99% 25% 15W GPU: PeopleNet

Notes:

  • All figures are in 15W 6 core mode. To reproduce do: sudo nvpmodel -m 2; sudo jetson_clocks;
  • Test platform: Jetson Xavier NX and XNX Box running JetPack v4.5.1
  • The residual GPU usage in DLA-accelerated nets is caused by Sigmoid activations being computed with CUDA backend. Remaining layers are computed on DLA.
  • CPU usage will vary depending on factors such as camera resolution, framerate, available video formats and driver implementation.

More

Supported models / acceleratorss

pipeline = CameraPipelineDNN(
    cam_ids = [0, 1, 2]
    models=[
        models.PeopleNet.DLA0,
        models.PeopleNet.DLA1,
        models.PeopleNet.GPU,
        models.DashCamNet.DLA0,
        models.DashCamNet.DLA1,
        models.DashCamNet.GPU
        ]
    # ...
)
Owner
NVIDIA AI IOT
NVIDIA AI IOT
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022