Datasets for new state-of-the-art challenge in disentanglement learning

Overview

High resolution disentanglement datasets

This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for controllable generation in terms of image resolution, photorealism, and richness of style factors, as compared to existing disentanglement datasets.

Falor3D

The Falcor3D dataset consists of 233,280 images based on the 3D scene of a living room, where each image has a resolution of 1024x1024. The meta code corresponds to all possible combinations of 7 factors of variation:

  • lighting_intensity (5)
  • lighting_x-dir (6)
  • lighting_y-dir (6)
  • lighting_z-dir (6)
  • camera_x-pos (6)
  • camera_y-pos (6)
  • camera_z-pos (6)

Note that the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = lighting_intensity * 46656 + lighting_x-dir * 7776 + lighting_y-dir * 1296 + 
lighting_z-dir * 216 + camera_x-pos * 36 + camera_y-pos * 6 + camera_z-pos

padded_index = index padded with zeros such that it has 6 digits.

To see the Falcor3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Falor3D

and the results are saved in the examples/falcor3d_samples folder.

You can also check out the Falcor3D images here: falcor3d_samples_demo, which includes all the ground-truth latent traversals.

Isaac3D

The Isaac3D dataset consists of 737,280 images, based on the 3D scene of a kitchen, where each image has a resolution of 512x512. The meta code corresponds to all possible combinations of 9 factors of variation:

  • object_shape (3)
  • object_scale (4)
  • camera_height (4)
  • robot_x-movement (8)
  • robot_y-movement (5)
  • lighting_intensity (4)
  • lighting_y-dir (6)
  • object_color (4)
  • wall_color (4)

Similarly, the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = object_shape * 245760 + object_scale * 30720 + camera_height * 6144 + 
robot_x-movement * 1536 + robot_y-movement * 384 + lighting_intensity * 96 + 
lighting_y-dir * 16 + object_color * 4 + wall color

padded_index = index padded with zeros such that it has 6 digits.

To see the Isaac3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Isaac3D

and the results are saved in the examples/isaac3d_samples folder.

You can also check out the Isaac3D images here: isaac3d_samples_demo, which includes all the ground-truth latent traversals.

Links to datasets

The two datasets can be downloaded from Google Drive:

  • Falcor3D (98 GB): link
  • Isaac3D (190 GB): link

Besides, we also provide a downsampled version (resolution 128x128) of the two datasets:

  • Falcor3D_128x128 (3.7 GB): link
  • Isaac3D_128x128 (13 GB): link

License

This work is licensed under a Creative Commons Attribution 4.0 International License by NVIDIA Corporation (https://creativecommons.org/licenses/by/4.0/).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022