Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

Overview

FCS-applications

Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture.

Introduction

This repository contains the program of the training and testing procedures of FCS-CsiNet and FCS-CRNet proposed in Boyuan Zhang, Haozhen Li, Xin Liang, Xinyu Gu, and Lin Zhang, "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback" (submitted to IET Electronics Letters).

Requirements

  • Python 3.5 (or 3.6)
  • Keras (>=2.1.1)
  • Tensorflow (>=1.4)
  • Numpy

Instructions

The following instructions are necessary before the network training:

  • The repository only provide the programs used for the training and testing of the FCS-CsiNet and FCS-CRNet in the form of python files. The network models in the form of h5 files are not included.
  • The part "settings of GPU" in each python file should be adjusted in advance according to the device setting of the user.
  • The experiments of different Compression Rates can be performed by adjusting the "encoded_dim" in the programs.
  • The folds named "result" and "data" should be established in advance in the folds "FCS-CsiNet" and "FCS-CRNet" to store the models obtained during the training procedure and to store the dataset used for training and testing.
  • The dataset used in the network training can be downloaded from https://drive.google.com/drive/folders/1_lAMLk_5k1Z8zJQlTr5NRnSD6ACaNRtj?usp=sharing, which is first provided in https://github.com/sydney222/Python_CsiNet). The dataset should be put in the folds "data". Therefore, the structure of the folds "FCS-CsiNet" and "FCS-CRNet" should be:
*.py
result/
data/
  *.mat

Training Procedure

The training and testing procedures are demonstrated as follows:

Step.1 Main training process

Run Step1_main_training_1.py and Step1_main_training_12.py to obtain the parameters of the shared FC layer and the pre-trained models of the other parts of the network.

Step.2 Assistant review processes

Run Step2_assistant_review.py to obtain the model used in Scenario_1. The feedback accuracy of the model in Scenario_1 will be also be calculated in Step.2.

Step.3 Assistant compensation process

Run Step3_assistant_compensation.py to obtain the model used in Scenario_2. The feedback accuracy of the model in Scenario_2 will be also be calculated in Step.3.

The results are given in the submitted manuscript "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback".

Owner
Boyuan Zhang
Boyuan Zhang
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022