Passive TCP/IP Fingerprinting Tool. Run this on your server and find out what Operating Systems your clients are *really* using.

Related tags

Networkingzardaxt
Overview

Passive TCP/IP Fingerprinting

This is a passive TCP/IP fingerprinting tool. Run this on your server and find out what operating systems your clients are really using. This tool considers only the fields and options from the very first incoming SYN packet of the TCP 3-Way Handshake. Nothing else is considered.

Why?

  • p0f is dead. It's database is too old. Also: C is a bit overkill and hard to quickly hack in.
  • satori.py is extremely buggy and hard to use (albeit the ideas behind the code are awesome)
  • The actual statistics behind TCP/IP fingerprinting are more important than the tool itself. Therefore it makes sense to rewrite it.

Demo

Live Demo & Blog Article

Example

Classifying my Android smartphone:

python tcp_fingerprint.py -i eth0 --classify

Loaded 716 fingerprints from the database
listening on interface eth0

1616184306: 73.153.184.210:48646 -> 167.99.241.135:443 [SYN]
{'avgScoreOsClass': {'Android': 'avg=5.78, N=36',
                     'Linux': 'avg=5.11, N=99',
                     'Windows': 'avg=2.66, N=365',
                     'iOS': 'avg=3.62, N=20',
                     'macOS': 'avg=3.65, N=189'},
 'bestNGuesses': [{'os': 'Android', 'score': '8.0/10'},
                  {'os': 'Android', 'score': '8.0/10'},
                  {'os': 'Android', 'score': '8.0/10'}]}
---------------------------------
1616184306: 167.99.241.135:443 -> 73.153.184.210:48646 [SYN+ACK]
---------------------------------

A iPhone (User-Agent: iPhone; CPU iPhone OS 14_4_1 like Mac OS X) visting my server. Based on the SYN fingerprint alone, it's not possible to discern whether it's an macOS device or iOS device. But the guess is accurate enough.

python tcp_fingerprint.py -i eth0 --classify

Loaded 716 fingerprints from the database
listening on interface eth0

---------------------------------
1616184541: 85.19.65.217:49988 -> 167.99.241.135:443 [SYN]
{'avgScoreOsClass': {'Android': 'avg=4.18, N=36',
                     'Linux': 'avg=3.31, N=99',
                     'Windows': 'avg=3.36, N=365',
                     'iOS': 'avg=6.95, N=20',
                     'macOS': 'avg=7.26, N=189'},
 'bestNGuesses': [{'os': 'macOS', 'score': '10.0/10'},
                  {'os': 'macOS', 'score': '10.0/10'},
                  {'os': 'macOS', 'score': '10.0/10'}]}
---------------------------------
1616184541: 167.99.241.135:443 -> 85.19.65.217:49988 [SYN+ACK]
---------------------------------

And a Windows 10 (Windows NT 10.0; Win64; x64) device visiting my server:

python tcp_fingerprint.py -i eth0 --classify

Loaded 716 fingerprints from the database
listening on interface eth0

---------------------------------
1616184750: 186.53.223.136:10047 -> 167.99.241.135:443 [SYN]
{'avgScoreOsClass': {'Android': 'avg=3.88, N=36',
                     'Linux': 'avg=4.85, N=99',
                     'Windows': 'avg=7.47, N=365',
                     'iOS': 'avg=4.03, N=20',
                     'macOS': 'avg=3.81, N=189'},
 'bestNGuesses': [{'os': 'Windows', 'score': '10.0/10'},
                  {'os': 'Windows', 'score': '10.0/10'},
                  {'os': 'Windows', 'score': '10.0/10'}]}
---------------------------------
1616184750: 167.99.241.135:443 -> 186.53.223.136:10047 [SYN+ACK]
---------------------------------

Installation & Usage

First clone the repo:

git clone https://github.com/NikolaiT/zardaxt

cd zardaxt

Setup with pipenv.

pipenv shell

pipenv install

And run it

python tcp_fingerprint.py -i eth0 --classify

Or run in the background on your server

py=/root/.local/share/virtualenvs/satori-v7E0JF0G/bin/python
nohup $py tcp_fingerprint.py -i eth0 --classify > fp.out 2> fp.err < /dev/null &

Theory

Several fields such as TCP Options or TCP Window Size or IP Fragment Flag depend heavily on the OS type and version.

Detecting operating systems by analyizing the first incoming SYN packet is surely no exact science, but it's better than nothing.

Some code and inspiration has been taken from: https://github.com/xnih/satori

However, the codebase of github.com/xnih/satori was quite frankly a huge mess (randomly failing code segments and capturing all Errors: Not good, no no no).

This project does not attempt to be exact, it should give some hints what might be the OS of the incoming TCP/IP stream.

What fields are used for TCP/IP fingerprinting?

Sources:

  1. Mostly Wikipedia TCP/IP fingerprinting article
  2. A lot of inspiration from Satori.py
  3. Another TCP/IP fingerprinting tool

Entropy from the IP header

  • IP.ttl (8 bits) - Initial time to live (TTL) value of the IP header. The TTL indicates how long a IP packet is allowed to circulate in the Internet. Each hop (such as a router) decrements the TTL field by one. The maximum TTL value is 255, the maximum value of a single octet (8 bits). A recommended initial value is 64, but some operating systems customize this value. Hence it's relevancy for TCP/IP fingerprinting.
  • IP.flags (3 bits) - Don't fragment (DF) and more fragments (MF) flags. In the flags field of the IPv4 header, there are three bits for control flags. The "don't fragment" (DF) bit plays a central role in Path Maximum Transmission Unit Discovery (PMTUD) because it determines whether or not a packet is allowed to be fragmented. Some OS set the DF flag in the IP header, others don't.

Entropy from the TCP header

  • TCP.data_offset (4 bits) - This is the size of the TCP header in 32-bit words with a minimum size of 5 words and a maximum size of 15 words. Therefore, the maximum TCP header size size is 60 bytes (with 40 bytes of options data). The TCP header size thus depends on how much options are present at the end of the header.
  • TCP.window_size (16 bits) - Initial window size. The idea is that different operating systems use a different initial window size in the initial TCP SYN packet.
  • TCP.flags (9 bits) - This header field contains 9 one-bit flags for TCP protocol controlling purposes. The initial SYN packet has mostly a flags value of 2 (which means that only the SYN flag is set). However, I have also observed flags values of 194 (2^1 + 2^6 + 2^7), which means that the SYN, ECE and CWR flags are set to one. If the SYN flag is set, ECE means that the client is ECN capable. Congestion window reduced (CWR) means that the sending host received a TCP segment with the ECE flag set and had responded in congestion control mechanism.
  • TCP.acknowledgment_number (32 bits) - If the ACK flag is set then the value of this field is the next sequence number that the sender of the ACK is expecting. Should be zero if the SYN flag is set on the very first packet.
  • TCP.sequence_number (32 bits) - If the SYN flag is set (1), then this is the initial sequence number. It is conjectured that different operating systems use different initial sequence numbers, but the initial sequence number is most likely randomly chosen. Therefore this field is most likely of no particular help regarding fingerprinting.
  • TCP.urgent_pointer (16 bits) - If the URG flag is set, then this 16-bit field is an offset from the sequence number indicating the last urgent data byte. It should be zero in initial SYN packets.
  • TCP.options (Variable 0-320 bits) - All TCP Options. The length of this field is determined by the data offset field. Contains a lot of information, but most importantly: The Maximum Segment Size (MSS), the Window scale value. Because the TCP options data is variable in size, it is the most important source of entropy to distinguish operating systems. The order of the TCP options is also taken into account.
Owner
Nikolai Tschacher
In love with programming and entrepreneurship. I earned a M. Sc. in CS from Humboldt University of Berlin. Interests: IT Security, Typescript/JS, Python, C.
Nikolai Tschacher
MoreIP 一款基于Python的面向 MacOS/Linux 用户用于查询IP/域名信息的日常渗透小工具

MoreIP 一款基于Python的面向 MacOS/Linux 用户用于查询IP/域名信息的日常渗透小工具

xq17 9 Sep 21, 2022
A Powerful, Smart And Simple Userbot In Telethon

Owner: KeinShin 🇮🇳 BLACK LIGHTNING A Powerful, Smart And Simple Userbot In Telethon. Credits This is A Remix Bot Of Many UserBot. DARKCOBRA FridayUs

Akki ThePro 1 Nov 29, 2021
A simple port scanner for Web/ip scanning Port 0/500 editable inside the .py file

Simple-Port-Scanner a simple port scanner for Web/ip scanning Port 0/500 editable inside the .py file Open Cmd/Terminal Cmd Downloads Run Command: pip

YABOI 1 Nov 22, 2021
Netwalk is a Python library to discover, parse, analyze and change Cisco switched networks

Netwalk is a Python library born out of a large remadiation project aimed at making network device discovery and management as fast and painless as possible.

38 Nov 07, 2022
Huawei firewall automatically updates Chinese ip to target IP group.

Huawei firewall automatically updates Chinese ip to target IP group.

Lundaa 0 Jan 11, 2022
BLE parser for passive BLE advertisements

This pypi package is parsing BLE advertisements to readable data for several sensors and can be used for device tracking, as long as the MAC address is static. The parser was originally developed as

Ernst Klamer 19 Dec 26, 2022
Serves some data over HTTP, once. Based on the built-in Python module http.server

serve-me-once Serves some data over HTTP, once. Based on the built-in Python module http.server.

Peder Bergebakken Sundt 2 Jan 06, 2022
DNSStager is an open-source project based on Python used to hide and transfer your payload using DNS.

What is DNSStager? DNSStager is an open-source project based on Python used to hide and transfer your payload using DNS. DNSStager will create a malic

Askar 547 Dec 20, 2022
Search ports in multiples hosts

Search Port ✨ Multiples Searchs ✨ Create list hosts Create list targets Start Require Python 3.10.0+. python main.py Struture Function Directory load_

Tux#3634 7 Apr 29, 2022
Burp Extension that copies a request and builds a FFUF skeleton

ffuf is gaining a lot of traction within the infosec community as a fast portable web fuzzer. It has been compared and aligned (kinda) to Burp's Intruder functionality. Thus, Copy As FFUF is trying t

Desmond Miles 81 Dec 22, 2022
Tiny Interactive File Transfer Application

TIFTA: Tiny Interactive File Transfer Application This repository holds all the source code, tests and documentation of the TIFTA software. The main g

Jorge Martínez 2 Dec 08, 2021
openPortScanner is a port scanner made with Python!

Port Scanner made with python • Installation • Usage • Commands Installation Run this to install: $ git clone https://github.com/Miguel-Galdin0/openPo

Miguel Galdino 7 Jan 09, 2022
A Network tool kit for scanning active IP addresses and open ports

Network scanner A small project that I wrote on the fly for (IT351) Computer Networks University Course to identify and label the devices in my networ

Mohamed Abdelrahman 10 Nov 07, 2022
Simple python script for automated network scans with random name generator(useful for CTF boxes).

📄 Automated NMAP script Description Simple python script for automated network scans with random name generator(useful for CTF boxes). Requirements 1

Dhmos Funk 2 Oct 29, 2021
Octodns-cloudflare - Cloudflare DNS provider for octoDNS

CloudflareProvider provider for octoDNS An octoDNS provider that targets Cloudfl

octoDNS 6 May 28, 2022
Securely and anonymously share files, host websites, and chat with friends using the Tor network

OnionShare OnionShare is an open source tool that lets you securely and anonymously share files, host websites, and chat with friends using the Tor ne

OnionShare 5.4k Jan 01, 2023
Decentra Network is an open source blockchain that combines speed, security and decentralization.

Decentra Network is an open source blockchain that combines speed, security and decentralization. Decentra Network has very high speeds, scalability, asymptotic security and complete decentralization

Decentra Network 74 Nov 22, 2022
syncio: asyncio, without await

syncio: asyncio, without await asyncio can look very intimidating to newcomers, because of the async/await syntax. Even experienced programmers can ge

David Brochart 10 Nov 21, 2022
Docker container for demoing Wi-Fi calling stack.

VoWiFiLocalDemo - Docker container that runs StrongSwan and Kamailio to demonstrate how Wi-Fi calling works on smartphones.

18 Nov 12, 2022
Library containing the core modules for the kingdom-python-server.

🏰 Kingdom Core Library containing the core modules for the kingdom-python-server. Installation Use the package manager pip to install kingdom-core. p

T10 4 Dec 27, 2021