Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

DC/OS - The Datacenter Operating System

DC/OS - The Datacenter Operating System The easiest way to run microservices, big data, and containers in production. What is DC/OS? Like traditional

DC/OS 2.3k Jan 06, 2023
Inferoxy is a service for quick deploying and using dockerized Computer Vision models.

Inferoxy is a service for quick deploying and using dockerized Computer Vision models. It's a core of EORA's Computer Vision platform Vision Hub that runs on top of AWS EKS.

94 Oct 10, 2022
The leading native Python SSHv2 protocol library.

Paramiko Paramiko: Python SSH module Copyright: Copyright (c) 2009 Robey Pointer 8.1k Jan 04, 2023

A Simple script to hunt unused Kubernetes resources.

K8SPurger A Simple script to hunt unused Kubernetes resources. Release History Release 0.3 Added Ingress Added Services Account Adding RoleBindding Re

Yogesh Kunjir 202 Nov 19, 2022
Bitnami Docker Image for Python using snapshots for the system packages repositories

Python Snapshot packaged by Bitnami What is Python Snapshot? Python is a programming language that lets you work quickly and integrate systems more ef

Bitnami 1 Jan 13, 2022
Project 4 Cloud DevOps Nanodegree

Project Overview In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API. Yo

1 Nov 21, 2021
A little script and trick to make your heroku app run forever without being concerned about dyno hours.

A little script and trick to make your heroku app run forever without being concerned about dyno hours.

Tiararose Biezetta 152 Dec 25, 2022
framework providing automatic constructions of vulnerable infrastructures

中文 | English 1 Introduction Metarget = meta- + target, a framework providing automatic constructions of vulnerable infrastructures, used to deploy sim

rambolized 685 Dec 28, 2022
Blazingly-fast :rocket:, rock-solid, local application development :arrow_right: with Kubernetes.

Gefyra Gefyra gives Kubernetes-("cloud-native")-developers a completely new way of writing and testing their applications. Over are the times of custo

Michael Schilonka 352 Dec 26, 2022
A cpp project template that uses CMake to build and Google Test / Github Actions to provide a CI

A cpp project template that uses CMake to build and Google Test / Github Actions to provide a CI

Martin Olivier 6 Nov 17, 2022
Ralph is the CMDB / Asset Management system for data center and back office hardware.

Ralph Ralph is full-featured Asset Management, DCIM and CMDB system for data centers and back offices. Features: keep track of assets purchases and th

Allegro Tech 1.9k Jan 01, 2023
Run your clouds in RAID.

UniKlaud Run your clouds in RAID Table of Contents About The Project Built With Getting Started Installation Usage Roadmap Contributing License Contac

3 Jan 16, 2022
Bash-based Python-venv convenience wrapper

venvrc Bash-based Python-venv convenience wrapper. Demo Install Copy venvrc file to ~/.venvrc, and add the following line to your ~/.bashrc file: # so

1 Dec 29, 2022
Ansible for DevOps examples.

Ansible for DevOps Examples This repository contains Ansible examples developed to support different sections of Ansible for DevOps, a book on Ansible

Jeff Geerling 6.6k Jan 08, 2023
strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing:

strava-offline Overview strava-offline is a tool to keep a local mirror of Strava activities for further analysis/processing: synchronizes metadata ab

Tomáš Janoušek 29 Dec 14, 2022
Manage your SSH like a boss.

--- storm is a command line tool to manage your ssh connections. features adding, editing, deleting, listing, searching across your SSHConfig. command

Emre Yılmaz 3.9k Jan 03, 2023
This repository contains code examples and documentation for learning how applications can be developed with Kubernetes

BigBitBus KAT Components Click on the diagram to enlarge, or follow this link for detailed documentation Introduction Welcome to the BigBitBus Kuberne

51 Oct 16, 2022
DataOps framework for Machine Learning projects.

Noronha DataOps Noronha is a Python framework designed to help you orchestrate and manage ML projects life-cycle. It hosts Machine Learning models ins

52 Oct 30, 2022
HXVM - Check Host compatibility with the Virtual Machines

HXVM - Check Host compatibility with the Virtual Machines. Features | Installation | Usage Features Takes input from user to compare how many VMs they

Aman Srivastava 4 Oct 15, 2022
Nagios status monitor for your desktop.

Nagstamon Nagstamon is a status monitor for the desktop. It connects to multiple Nagios, Icinga, Opsview, Centreon, Op5 Monitor/Ninja, Checkmk Multisi

Henri Wahl 361 Jan 05, 2023