Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Overview

Energy_Output_Predictor

Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Abstract

Energy output of a combined cycle power plant is been predicted with the help of a regressor model build on an Artificial Neural Network (ANN). Initially the data is divided into dependent and independent varialbes and feature scaling is applied on the variables.The the dataset is split into trainig set and testing set in a ratio of 4:1. Then the ANN model is built with google tensorfolw 2.7.0, keras and the model is then trained with the traning set.

Data Set Information:

The dataset contains 9568 data points collected from a Combined Cycle Power Plant over 6 years (2006-2011), when the power plant was set to work with full load. Features consist of hourly average ambient variables Temperature (T), Ambient Pressure (AP), Relative Humidity (RH) and Exhaust Vacuum (V) to predict the net hourly electrical energy output (EP) of the plant. A combined cycle power plant (CCPP) is composed of gas turbines (GT), steam turbines (ST) and heat recovery steam generators. In a CCPP, the electricity is generated by gas and steam turbines, which are combined in one cycle, and is transferred from one turbine to another. While the Vacuum is colected from and has effect on the Steam Turbine, he other three of the ambient variables effect the GT performance. For comparability with our baseline studies, and to allow 5x2 fold statistical tests be carried out, we provide the data shuffled five times. For each shuffling 2-fold CV is carried out and the resulting 10 measurements are used for statistical testing. We provide the data both in .ods and in .xlsx formats.

Attribute Information:

Features consist of hourly average ambient variables - Temperature (T) in the range 1.81°C and 37.11°C, - Ambient Pressure (AP) in the range 992.89-1033.30 milibar, - Relative Humidity (RH) in the range 25.56% to 100.16% - Exhaust Vacuum (V) in teh range 25.36-81.56 cm Hg - Net hourly electrical energy output (EP) 420.26-495.76 MW The averages are taken from various sensors located around the plant that record the ambient variables every second. The variables are given without normalization.

Evaluation of the model with R2 score

R2 score the model turns out to be = 0.943900808510774



For more information on the dataset visit: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

Owner
CSE UnderGrad Student at PES University.
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023