Real-Time Social Distance Monitoring tool using Computer Vision

Overview

Social Distance Detector

A Real-Time Social Distance Monitoring Tool

Project Status: Active

Table of Contents

Motivation

The current COVID-19 pandemic is showing negative effects on human health as well as on social and economic life. It is a critical and challenging task to revive public life while minimizing the risk of infection. Reducing interactions between people by social distancing is an effective and prevalent measure to reduce the risk of infection and spread of the virus within a community. And so, this project will help to monitor that.

YOLO Theory

YOLO or You Only Look Once is an algorithm that uses neural networks to provide real-time object detection. Object detection in YOLO is done as a regression problem and provides the class probabilities of the detected images. As the name suggests, the algorithm requires only a single forward propagation through a neural network to detect objects.

Detection Output

animated


A single frame from Video 1

Detection Output 1

A single frame from Video 2

Detection Output 2

Tech Stack

  • Python

Functionalities

  • Detect people who are practicing social distancing and those who are not.
  • Draw a green coloured box around those who are practicing social distancing and red for those who are not.
  • Display the following information :
    • The threshold values used for detection.
    • Number of people recognized.
    • Number of people who are practicing social distancing.
    • Number of people who are not practicing social distancing.

To Do and Further Improvements

  • Using YOLO for Image Detection
  • Calculate the distance between people and categorise them as safe and unsafe
  • Draw green coloured boxes for those who follow social distancing and red for those who don't.
  • Detect and draw boxes for image, video and live stream.
  • Adding Birds-Eye View for the Video
  • Work on the minimum pixel distance for different media.
  • Assign a score at the end of the video/stream for every person based on the time they were not socially distanced.

Requirements

The following dependencies and modules(python) are required, to run this locally

  • os, sys, argparse
  • math
  • mimetypes
  • numpy==1.21.2
  • opencv-python==4.5.3.56

To install the requirements run:

$ pip install -r requirements.txt

Run Locally

  • Clone the GitHub repository
$ git clone git@github.com:Pranav1007/Social-Distance-Detector.git
  • Move to the Project Directory
$ cd Social-Distance-Detector
  • Create a Virtual Environment (Optional)

    • Install Virtualenv using pip (If it is not installed)
     $ pip install virtualenv
    • Create the Virtual Environment
    $ virtualenv sdd
    • Activate the Virtual Environment

      • In MAC OS/Linux
      $ source sdd/bin/activate
      • In Windows
      $ source sdd\Scripts\activate
  • Install the requirements

(sdd) $ pip install -r requirements.txt
  • Run the python script run.py along with the appropriate arguements
(sdd) $ python3 run.py -m v -p media/test.mp4
  • Usage
"""
    Usage:
      usage: run.py [-h] [-m MEDIA] [-p PATH]

    optional arguements:
      -h --help                 Show this screen and exit.
      -m MEDIA --media MEDIA    Media Type (image(or i), video(or v), webcam(or w))
      -p PATH --path PATH       Path of the Media File (For webcam enter any character)
"""
  • Other options to Edit
   """
       You can go to the utilities/config.py and change the threshold values based on the video and system requirements.
   """
   # If you want to use GPU:
   Set USE_GPU = True
   # If you want to increase or decrease the minimum threshold distance
   Modify the DIST_THRES value
   # If you want to change the Non Maximum Supression Threshold or Confidence Threshold
   Modify the NMS_THRESH or CONF_THRESH values respectively
  • Dectivate the Virtual Environment (after you are done)
(sdd) $ deactivate

License

License
This project is under the Apache-2.0 License License. See LICENSE for Details.

Contributors


Pranav B Kashyap


Prakhar Singh


Avi Tewari

Owner
Pranav B
Pranav B
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022