Real-Time Social Distance Monitoring tool using Computer Vision

Overview

Social Distance Detector

A Real-Time Social Distance Monitoring Tool

Project Status: Active

Table of Contents

Motivation

The current COVID-19 pandemic is showing negative effects on human health as well as on social and economic life. It is a critical and challenging task to revive public life while minimizing the risk of infection. Reducing interactions between people by social distancing is an effective and prevalent measure to reduce the risk of infection and spread of the virus within a community. And so, this project will help to monitor that.

YOLO Theory

YOLO or You Only Look Once is an algorithm that uses neural networks to provide real-time object detection. Object detection in YOLO is done as a regression problem and provides the class probabilities of the detected images. As the name suggests, the algorithm requires only a single forward propagation through a neural network to detect objects.

Detection Output

animated


A single frame from Video 1

Detection Output 1

A single frame from Video 2

Detection Output 2

Tech Stack

  • Python

Functionalities

  • Detect people who are practicing social distancing and those who are not.
  • Draw a green coloured box around those who are practicing social distancing and red for those who are not.
  • Display the following information :
    • The threshold values used for detection.
    • Number of people recognized.
    • Number of people who are practicing social distancing.
    • Number of people who are not practicing social distancing.

To Do and Further Improvements

  • Using YOLO for Image Detection
  • Calculate the distance between people and categorise them as safe and unsafe
  • Draw green coloured boxes for those who follow social distancing and red for those who don't.
  • Detect and draw boxes for image, video and live stream.
  • Adding Birds-Eye View for the Video
  • Work on the minimum pixel distance for different media.
  • Assign a score at the end of the video/stream for every person based on the time they were not socially distanced.

Requirements

The following dependencies and modules(python) are required, to run this locally

  • os, sys, argparse
  • math
  • mimetypes
  • numpy==1.21.2
  • opencv-python==4.5.3.56

To install the requirements run:

$ pip install -r requirements.txt

Run Locally

  • Clone the GitHub repository
$ git clone git@github.com:Pranav1007/Social-Distance-Detector.git
  • Move to the Project Directory
$ cd Social-Distance-Detector
  • Create a Virtual Environment (Optional)

    • Install Virtualenv using pip (If it is not installed)
     $ pip install virtualenv
    • Create the Virtual Environment
    $ virtualenv sdd
    • Activate the Virtual Environment

      • In MAC OS/Linux
      $ source sdd/bin/activate
      • In Windows
      $ source sdd\Scripts\activate
  • Install the requirements

(sdd) $ pip install -r requirements.txt
  • Run the python script run.py along with the appropriate arguements
(sdd) $ python3 run.py -m v -p media/test.mp4
  • Usage
"""
    Usage:
      usage: run.py [-h] [-m MEDIA] [-p PATH]

    optional arguements:
      -h --help                 Show this screen and exit.
      -m MEDIA --media MEDIA    Media Type (image(or i), video(or v), webcam(or w))
      -p PATH --path PATH       Path of the Media File (For webcam enter any character)
"""
  • Other options to Edit
   """
       You can go to the utilities/config.py and change the threshold values based on the video and system requirements.
   """
   # If you want to use GPU:
   Set USE_GPU = True
   # If you want to increase or decrease the minimum threshold distance
   Modify the DIST_THRES value
   # If you want to change the Non Maximum Supression Threshold or Confidence Threshold
   Modify the NMS_THRESH or CONF_THRESH values respectively
  • Dectivate the Virtual Environment (after you are done)
(sdd) $ deactivate

License

License
This project is under the Apache-2.0 License License. See LICENSE for Details.

Contributors


Pranav B Kashyap


Prakhar Singh


Avi Tewari

Owner
Pranav B
Pranav B
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022