The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Overview

Openspoor

alt text

The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway. Its goal is to be publicly available and function as an open source package.

Currently the openspoor package allows the following transformations:

Type of input:

  • Point data

These transformations can be performed between the following systems:

Geographical systems:

  • WGS84 coordinate system (commonly known as GPS coordinates)
  • EPSG:28992 coordinate system (commonly known in the Netherlands as Rijksdriehoek)

Topological systems:

  • Geocode and geocode kilometrering
  • Spoortak and spoortak kilometrering (unavailable on switches)

Getting Started

Installation

Installation using anaconda

  • Clone the "openspoor" repository
    • pip install openspoor
  • create an environment:
    • conda create -n openspoorenv python==3.6.12
  • activate the environment:
    • conda activate openspoorenv
  • If you are installing on Windows OS with Anaconda, first install rtree and geopandas through anaconda with the commands:
    • conda install rtree==0.8.3 -y
    • conda install geopandas==0.6.1 -y
  • In the root directory of the repository, execute the command:
    • pip install -r requirements.txt
  • In the root directory of the repository, execute the command:
    • pip install .
  • In the root directory of the repository, execute the command:
    • python -m pytest
  • If all the test succeed, the openspoor package is ready to use and you are on the right "track"!

Demonstration notebook

In the future a notebook will be added that demonstrates the use of the openspoor package. For now one can take the code in the acceptance tests as example of how to use the package.

Dependencies

The transformations available in the openspoor package rely completely on data and API's made available at https://mapservices.prorail.nl/. Be aware of this dependency and specifically of the following possible issues:

  • The use of API's on mapservices.prorail.nl is changed
  • The output data of the mapservices API's is changed (with added, removed or missing columns for instance)

Furthermore mapservices.prorail.nl only provides current information about the topological systems used in Dutch Railways. As the topological systems tend to change with time, due to changing infrastructure and naming conventions, the current topological system is not necessarily sufficient to provide transformations on historical data. In the future we hope to add historical topological systems as part of the functionality of this package in such a way that it is available publicly.

Structure

The structure of the openspoor package is largely split in two categories.

MapservicesData

The MapservicesData classes use mapservices.prorail.nl API's to retrieve the necessary data to perform transformations. The essentially function as an interface with the topological systems used by ProRail.

  • PUICMapservices provides general data about railway tracks (spoor) and switches (wissel and kruisingbenen). This contains information regarding Geocode, geocodekilometrering, but also Spoortak identificatie.
  • SpoortakMapservices provides information about railway tracks concerning Spoortak identificatie and lokale kilometrering.

Transformers

The various transformers use the geopandas dataframes obtained by MapservicesData objects to add additional geographical or topological systems to a given geopandas input dataframe. The current transformers only function for geopandas dataframes containing Point data. The available transformers are:

  • TransformerCoordinatesToSpoor: transforms WGS84 or EPSG:28992 coordinates to spoortak and lokale kilomtrering as well as geocode and geocode kilometrering.
  • TransformerGeocodeToCoordinates: transforms geocode and geocode kilometrering to WGS84 or EPSG:28992 coordinates.
  • TransformerSpoorToCoordinates: transforms spoortak and lokale kilometrering to WGS84 or EPSG:28992 coordinates.

Release History

  • 0.1.0
    • The first proper release
    • ADD: transform point data between geographical systems.
  • 0.0.1
    • Work in progress

Contributing

The openspoor package stimulates every other person the contribute to the package. To do so:

  • Fork it
  • Create your feature branch (git checkout -b feature/fooBar)
  • Commit your changes (git commit -am 'Add some fooBar')
  • Push to the branch (git push origin feature/fooBar)
  • Create a new Pull Request with 3 obligated reviewers from the developement team.

You could also contribute by thinking of possible new features. The current backlog is:

  • Make the package available for the "spoor" industry.
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022