Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

Overview

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and both Python 2.7 and Python 3.

For more information, along with a detailed code review check out the following posts on the PyImageSearch.com blog:

Installation

Provided you already have NumPy, SciPy, Matplotlib, and OpenCV already installed, the imutils package is completely pip-installable:

$ pip install imutils

Finding function OpenCV functions by name

OpenCV can be a big, hard to navigate library, especially if you are just getting started learning computer vision and image processing. The find_function method allows you to quickly search function names across modules (and optionally sub-modules) to find the function you are looking for.

Example:

Let's find all function names that contain the text contour:

import imutils
imutils.find_function("contour")

Output:

1. contourArea
2. drawContours
3. findContours
4. isContourConvex

The contourArea function could therefore be accessed via: cv2.contourArea

Translation

Translation is the shifting of an image in either the x or y direction. To translate an image in OpenCV you would need to supply the (x, y)-shift, denoted as (tx, ty) to construct the translation matrix M:

Translation equation

And from there, you would need to apply the cv2.warpAffine function.

Instead of manually constructing the translation matrix M and calling cv2.warpAffine, you can simply make a call to the translate function of imutils.

Example:

# translate the image x=25 pixels to the right and y=75 pixels up
translated = imutils.translate(workspace, 25, -75)

Output:

Translation example

Rotation

Rotating an image in OpenCV is accomplished by making a call to cv2.getRotationMatrix2D and cv2.warpAffine. Further care has to be taken to supply the (x, y)-coordinate of the point the image is to be rotated about. These calculation calls can quickly add up and make your code bulky and less readable. The rotate function in imutils helps resolve this problem.

Example:

# loop over the angles to rotate the image
for angle in xrange(0, 360, 90):
	# rotate the image and display it
	rotated = imutils.rotate(bridge, angle=angle)
	cv2.imshow("Angle=%d" % (angle), rotated)

Output:

Rotation example

Resizing

Resizing an image in OpenCV is accomplished by calling the cv2.resize function. However, special care needs to be taken to ensure that the aspect ratio is maintained. This resize function of imutils maintains the aspect ratio and provides the keyword arguments width and height so the image can be resized to the intended width/height while (1) maintaining aspect ratio and (2) ensuring the dimensions of the image do not have to be explicitly computed by the developer.

Another optional keyword argument, inter, can be used to specify interpolation method as well.

Example:

# loop over varying widths to resize the image to
for width in (400, 300, 200, 100):
	# resize the image and display it
	resized = imutils.resize(workspace, width=width)
	cv2.imshow("Width=%dpx" % (width), resized)

Output:

Resizing example

Skeletonization

Skeletonization is the process of constructing the "topological skeleton" of an object in an image, where the object is presumed to be white on a black background. OpenCV does not provide a function to explicitly construct the skeleton, but does provide the morphological and binary functions to do so.

For convenience, the skeletonize function of imutils can be used to construct the topological skeleton of the image.

The first argument, size is the size of the structuring element kernel. An optional argument, structuring, can be used to control the structuring element -- it defaults to cv2.MORPH_RECT , but can be any valid structuring element.

Example:

# skeletonize the image
gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
skeleton = imutils.skeletonize(gray, size=(3, 3))
cv2.imshow("Skeleton", skeleton)

Output:

Skeletonization example

Displaying with Matplotlib

In the Python bindings of OpenCV, images are represented as NumPy arrays in BGR order. This works fine when using the cv2.imshow function. However, if you intend on using Matplotlib, the plt.imshow function assumes the image is in RGB order. A simple call to cv2.cvtColor will resolve this problem, or you can use the opencv2matplotlib convenience function.

Example:

# INCORRECT: show the image without converting color spaces
plt.figure("Incorrect")
plt.imshow(cactus)

# CORRECT: convert color spaces before using plt.imshow
plt.figure("Correct")
plt.imshow(imutils.opencv2matplotlib(cactus))
plt.show()

Output:

Matplotlib example

URL to Image

This the url_to_image function accepts a single parameter: the url of the image we want to download and convert to a NumPy array in OpenCV format. This function performs the download in-memory. The url_to_image function has been detailed here on the PyImageSearch blog.

Example:

url = "http://pyimagesearch.com/static/pyimagesearch_logo_github.png"
logo = imutils.url_to_image(url)
cv2.imshow("URL to Image", logo)
cv2.waitKey(0)

Output:

Matplotlib example

Checking OpenCV Versions

OpenCV 3 has finally been released! But with the major release becomes backward compatibility issues (such as with the cv2.findContours and cv2.normalize functions). If you want your OpenCV 3 code to be backwards compatible with OpenCV 2.4.X, you'll need to take special care to check which version of OpenCV is currently being used and then take appropriate action. The is_cv2() and is_cv3() are simple functions that can be used to automatically determine the OpenCV version of the current environment.

Example:

print("Your OpenCV version: {}".format(cv2.__version__))
print("Are you using OpenCV 2.X? {}".format(imutils.is_cv2()))
print("Are you using OpenCV 3.X? {}".format(imutils.is_cv3()))

Output:

Your OpenCV version: 3.0.0
Are you using OpenCV 2.X? False
Are you using OpenCV 3.X? True

Automatic Canny Edge Detection

The Canny edge detector requires two parameters when performing hysteresis. However, tuning these two parameters to obtain an optimal edge map is non-trivial, especially when working with a dataset of images. Instead, we can use the auto_canny function which uses the median of the grayscale pixel intensities to derive the upper and lower thresholds. You can read more about the auto_canny function here.

Example:

gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
edgeMap = imutils.auto_canny(gray)
cv2.imshow("Original", logo)
cv2.imshow("Automatic Edge Map", edgeMap)

Output:

Matplotlib example

4-point Perspective Transform

A common task in computer vision and image processing is to perform a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI. The perspective module takes care of this for you. A real-world example of applying a 4-point perspective transform can be bound in this blog on on building a kick-ass mobile document scanner.

Example

See the contents of demos/perspective_transform.py

Output:

Matplotlib example

Sorting Contours

The contours returned from cv2.findContours are unsorted. By using the contours module the the sort_contours function we can sort a list of contours from left-to-right, right-to-left, top-to-bottom, and bottom-to-top, respectively.

Example:

See the contents of demos/sorting_contours.py

Output:

Matplotlib example

(Recursively) Listing Paths to Images

The paths sub-module of imutils includes a function to recursively find images based on a root directory.

Example:

Assuming we are in the demos directory, let's list the contents of the ../demo_images:

from imutils import paths
for imagePath in paths.list_images("../demo_images"):
	print imagePath

Output:

../demo_images/bridge.jpg
../demo_images/cactus.jpg
../demo_images/notecard.png
../demo_images/pyimagesearch_logo.jpg
../demo_images/shapes.png
../demo_images/workspace.jpg
Owner
PyImageSearch
Computer vision and deep learning
PyImageSearch
An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C.

vizh An esoteric visual language that takes image files as input based on a multi-tape turing machine, designed for compatibility with C. Overview Her

Sy Brand 228 Dec 17, 2022
LSB Image Steganography Using Python

Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio, and video files

Mahmut Can Gönül 2 Nov 04, 2021
A Gtk based Image Selector with Preview

gtk-image-selector This is an attempt to restore Gtk Image Chooser "lost functionality": displaying an image preview when selecting images... This is

Spiros Georgaras 2 Sep 28, 2022
Random collage/montage generator with drop-shadow

Random Collage Example Usage These are the sample input files in $PWD for the below examples: 1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10

M B 1 Dec 07, 2021
Optimize/Compress images using python

Image Optimization Using Python steps to run the script run the command to install the required libraries pip install -r requirements.txt create a dir

Shekhar Gupta 1 Oct 15, 2021
Image manipulation package used for EpicBot.

Image manipulation package used for EpicBot.

Nirlep_5252_ 7 May 26, 2022
Generate waves art for an image

waves-art Generate waves art for an image. Requirements: OpenCV Numpy Example Usage python waves_art.py --image_path tests/test1.jpg --patch_size 15 T

Hamza Rawal 18 Apr 04, 2022
Python script to generate vector graphics of an oriented lattice unit cell

unitcell Python script to generate vector graphics of an oriented lattice unit cell Examples unitcell --type hexagonal --eulers 12 23 34 --axes --crys

Philip Eisenlohr 2 Dec 10, 2021
👾 Python project to help you convert any image into a pixel art.

👾 Pixel Art Generator Python project to help you convert any image into a pixel art. ⚙️ Developer's Guide Things you need to get started with this co

Atul Anand 6 Dec 14, 2022
A small Python module for BMP image processing.

micropython-microbmp A small Python module for BMP image processing. It supports BMP image of 1/2/4/8/24-bit colour depth. Loading supports compressio

Quan Lin 4 Nov 02, 2022
Extract the temperature data of each wire from the thermal imager raw data.

Wire-Tempurature-Detection Extract the temperature data of each wire from the thermal imager raw data. The motivation of this computer vision project

JohanAckerman 1 Nov 03, 2021
A tool and a library for SVG path data transformations.

SVG path data transformation toolkit A tool and a library for SVG path data transformations. Currently it supports a translation and a scaling. Usage

Igor Mikushkin 2 Mar 07, 2022
Detecting haze image with hazer.

hazer-py Detecting haze image with hazer. What is hazer Hazer is a lib for getting "haze degree". This repository is python version of hazer: https://

Joey777210 2 Dec 27, 2021
This script is for photographers to do timeslice with one click.

One Click TimeSlice Tool What is this for This is for photographers who want to create TimeSlice pictures without installing PS plugins. Before using

Xi Zhao 13 Sep 23, 2022
SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system

SALaD (Semi-Automatic Landslide Detection) is a landslide mapping system. SALaD utilizes Object-based Image Analysis and Random Forest to map landslides.

NASA 14 Jan 04, 2023
Panel Competition Image Generator

Panel Competition Image Generator This project was build by a member of the NFH community and is open for everyone who wants to try it. Relevant links

Juliano Mendieta 1 Oct 22, 2021
Generates images of calendar month tables and can paste them onto suitable photos.

📆 calendizer README Generates images of calendar month tables and can paste them onto suitable photos. A quick way to make your own calendar for prin

Sean Ryan 2 Dec 14, 2022
A procedural Blender pipeline for photorealistic training image generation

BlenderProc2 A procedural Blender pipeline for photorealistic rendering. Documentation | Tutorials | Examples | ArXiv paper | Workshop paper Features

DLR-RM 1.8k Jan 02, 2023
A large-scale dataset of both raw MRI measurements and clinical MRI images

fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonym

Facebook Research 907 Jan 04, 2023
starfish is a Python library for processing images of image-based spatial transcriptomics.

starfish: scalable pipelines for image-based transcriptomics starfish is a Python library for processing images of image-based spatial transcriptomics

199 Dec 08, 2022