Imutils - A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

Overview

imutils

A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and both Python 2.7 and Python 3.

For more information, along with a detailed code review check out the following posts on the PyImageSearch.com blog:

Installation

Provided you already have NumPy, SciPy, Matplotlib, and OpenCV already installed, the imutils package is completely pip-installable:

$ pip install imutils

Finding function OpenCV functions by name

OpenCV can be a big, hard to navigate library, especially if you are just getting started learning computer vision and image processing. The find_function method allows you to quickly search function names across modules (and optionally sub-modules) to find the function you are looking for.

Example:

Let's find all function names that contain the text contour:

import imutils
imutils.find_function("contour")

Output:

1. contourArea
2. drawContours
3. findContours
4. isContourConvex

The contourArea function could therefore be accessed via: cv2.contourArea

Translation

Translation is the shifting of an image in either the x or y direction. To translate an image in OpenCV you would need to supply the (x, y)-shift, denoted as (tx, ty) to construct the translation matrix M:

Translation equation

And from there, you would need to apply the cv2.warpAffine function.

Instead of manually constructing the translation matrix M and calling cv2.warpAffine, you can simply make a call to the translate function of imutils.

Example:

# translate the image x=25 pixels to the right and y=75 pixels up
translated = imutils.translate(workspace, 25, -75)

Output:

Translation example

Rotation

Rotating an image in OpenCV is accomplished by making a call to cv2.getRotationMatrix2D and cv2.warpAffine. Further care has to be taken to supply the (x, y)-coordinate of the point the image is to be rotated about. These calculation calls can quickly add up and make your code bulky and less readable. The rotate function in imutils helps resolve this problem.

Example:

# loop over the angles to rotate the image
for angle in xrange(0, 360, 90):
	# rotate the image and display it
	rotated = imutils.rotate(bridge, angle=angle)
	cv2.imshow("Angle=%d" % (angle), rotated)

Output:

Rotation example

Resizing

Resizing an image in OpenCV is accomplished by calling the cv2.resize function. However, special care needs to be taken to ensure that the aspect ratio is maintained. This resize function of imutils maintains the aspect ratio and provides the keyword arguments width and height so the image can be resized to the intended width/height while (1) maintaining aspect ratio and (2) ensuring the dimensions of the image do not have to be explicitly computed by the developer.

Another optional keyword argument, inter, can be used to specify interpolation method as well.

Example:

# loop over varying widths to resize the image to
for width in (400, 300, 200, 100):
	# resize the image and display it
	resized = imutils.resize(workspace, width=width)
	cv2.imshow("Width=%dpx" % (width), resized)

Output:

Resizing example

Skeletonization

Skeletonization is the process of constructing the "topological skeleton" of an object in an image, where the object is presumed to be white on a black background. OpenCV does not provide a function to explicitly construct the skeleton, but does provide the morphological and binary functions to do so.

For convenience, the skeletonize function of imutils can be used to construct the topological skeleton of the image.

The first argument, size is the size of the structuring element kernel. An optional argument, structuring, can be used to control the structuring element -- it defaults to cv2.MORPH_RECT , but can be any valid structuring element.

Example:

# skeletonize the image
gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
skeleton = imutils.skeletonize(gray, size=(3, 3))
cv2.imshow("Skeleton", skeleton)

Output:

Skeletonization example

Displaying with Matplotlib

In the Python bindings of OpenCV, images are represented as NumPy arrays in BGR order. This works fine when using the cv2.imshow function. However, if you intend on using Matplotlib, the plt.imshow function assumes the image is in RGB order. A simple call to cv2.cvtColor will resolve this problem, or you can use the opencv2matplotlib convenience function.

Example:

# INCORRECT: show the image without converting color spaces
plt.figure("Incorrect")
plt.imshow(cactus)

# CORRECT: convert color spaces before using plt.imshow
plt.figure("Correct")
plt.imshow(imutils.opencv2matplotlib(cactus))
plt.show()

Output:

Matplotlib example

URL to Image

This the url_to_image function accepts a single parameter: the url of the image we want to download and convert to a NumPy array in OpenCV format. This function performs the download in-memory. The url_to_image function has been detailed here on the PyImageSearch blog.

Example:

url = "http://pyimagesearch.com/static/pyimagesearch_logo_github.png"
logo = imutils.url_to_image(url)
cv2.imshow("URL to Image", logo)
cv2.waitKey(0)

Output:

Matplotlib example

Checking OpenCV Versions

OpenCV 3 has finally been released! But with the major release becomes backward compatibility issues (such as with the cv2.findContours and cv2.normalize functions). If you want your OpenCV 3 code to be backwards compatible with OpenCV 2.4.X, you'll need to take special care to check which version of OpenCV is currently being used and then take appropriate action. The is_cv2() and is_cv3() are simple functions that can be used to automatically determine the OpenCV version of the current environment.

Example:

print("Your OpenCV version: {}".format(cv2.__version__))
print("Are you using OpenCV 2.X? {}".format(imutils.is_cv2()))
print("Are you using OpenCV 3.X? {}".format(imutils.is_cv3()))

Output:

Your OpenCV version: 3.0.0
Are you using OpenCV 2.X? False
Are you using OpenCV 3.X? True

Automatic Canny Edge Detection

The Canny edge detector requires two parameters when performing hysteresis. However, tuning these two parameters to obtain an optimal edge map is non-trivial, especially when working with a dataset of images. Instead, we can use the auto_canny function which uses the median of the grayscale pixel intensities to derive the upper and lower thresholds. You can read more about the auto_canny function here.

Example:

gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
edgeMap = imutils.auto_canny(gray)
cv2.imshow("Original", logo)
cv2.imshow("Automatic Edge Map", edgeMap)

Output:

Matplotlib example

4-point Perspective Transform

A common task in computer vision and image processing is to perform a 4-point perspective transform of a ROI in an image and obtain a top-down, "birds eye view" of the ROI. The perspective module takes care of this for you. A real-world example of applying a 4-point perspective transform can be bound in this blog on on building a kick-ass mobile document scanner.

Example

See the contents of demos/perspective_transform.py

Output:

Matplotlib example

Sorting Contours

The contours returned from cv2.findContours are unsorted. By using the contours module the the sort_contours function we can sort a list of contours from left-to-right, right-to-left, top-to-bottom, and bottom-to-top, respectively.

Example:

See the contents of demos/sorting_contours.py

Output:

Matplotlib example

(Recursively) Listing Paths to Images

The paths sub-module of imutils includes a function to recursively find images based on a root directory.

Example:

Assuming we are in the demos directory, let's list the contents of the ../demo_images:

from imutils import paths
for imagePath in paths.list_images("../demo_images"):
	print imagePath

Output:

../demo_images/bridge.jpg
../demo_images/cactus.jpg
../demo_images/notecard.png
../demo_images/pyimagesearch_logo.jpg
../demo_images/shapes.png
../demo_images/workspace.jpg
Owner
PyImageSearch
Computer vision and deep learning
PyImageSearch
Simple utility to tinker with OPlus images

OPlus image utilities Prerequisites Linux running kernel 5.4 or up (check with uname -r) Image rebuilding Used to rebuild read-only erofs images into

Wiley Lau 15 Dec 28, 2022
A tool for making simple-style text posters or wallpapers with high resolution.

PurePoster PurePoster is a fancy tool for making arbitrary-resolution, simple-style posters or wallpapers with text in center. Functionality PurePoste

Renyang Guan 4 Jul 09, 2022
A tool to maintain an archive/mirror of your Google Photos library for backup purposes.

Google Photos Archiver Updated Instructions 8/9/2021 Version 2.0.6 Instructions: Download the script (exe or python script listed below) Follow the in

Nick Dawson 116 Jan 03, 2023
vsketch is a Python generative art toolkit for plotters

Generative plotter art environment for Python

Antoine Beyeler 380 Dec 29, 2022
A GUI-based (PyQt5) tool used to design 2D linkage mechanism.

Pyslvs-UI A GUI-based (PyQt5) tool used to design 2D linkage mechanism. Planar Linkages Simulation Python-Solvespace: Kernel from Solvespace with Cyth

Yuan Chang 141 Dec 13, 2022
QR Code Generator

In this project, we'll be using some libraries to instantly generate authentic QR Codes and export them in various formats

Hassan Shahzad 3 Jun 02, 2022
A functional and efficient python implementation of the 3D version of Maxwell's equations

py-maxwell-fdfd Solving Maxwell's equations via A python implementation of the 3D curl-curl E-field equations. This code contains additional work to e

Nathan Zhao 12 Dec 11, 2022
Water marker for images.

watermarker linux users: To fix this error,please add truetype font path File "watermark.py", line 58, in module font = ImageFont.truetype("Dro

13 Oct 27, 2022
Fast batch image resizer and rotator for JPEG and PNG images.

imgp is a command line image resizer and rotator for JPEG and PNG images.

Terminator X 921 Dec 25, 2022
Pnuemonia Normal detection by using XRay images.

Pnuemonia Normal detection by using XRay images. Got image datas from kaggle(link is given in sources.txt file) also normal xray images from other site (also link is given) in order to avoid data dis

Zarina 1 Feb 28, 2022
Simple utility to tinker with OPlus images

OPlus image utilities Prerequisites Linux running kernel 5.4 or up (check with uname -r) Image rebuilding Used to rebuild read-only erofs images into

Wiley Lau 15 Dec 28, 2022
This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specialized data structure called VP-Tree which makes searching an image on a dataset of 100Ks almost instantanious

Offline Reverse Image Search Overview This app finds duplicate to near duplicate images by generating a hash value for each image stored with a specia

53 Nov 15, 2022
A Gtk based Image Selector with Preview

gtk-image-selector This is an attempt to restore Gtk Image Chooser "lost functionality": displaying an image preview when selecting images... This is

Spiros Georgaras 2 Sep 28, 2022
A large-scale dataset of both raw MRI measurements and clinical MRI images

fastMRI is a collaborative research project from Facebook AI Research (FAIR) and NYU Langone Health to investigate the use of AI to make MRI scans faster. NYU Langone Health has released fully anonym

Facebook Research 907 Jan 04, 2023
Kimimaro: Skeletonize Densely Labeled Images

Kimimaro: Skeletonize Densely Labeled Images # Produce SWC files from volumetric images. kimimaro forge labels.npy --progress # writes to ./kimimaro_o

92 Dec 17, 2022
LGVL helper script to batch and convert with lvgl offline image converter

script to batch and convert with lvgl offline image converter

Yohann 1 Oct 05, 2022
Create a static HTML/CSS image gallery from a bunch of images.

gallerize Create a static HTML/CSS image gallery from a bunch of images.

Jochen Kupperschmidt 19 Aug 21, 2022
Draw a torus passing through three given points.

PyTorusThreePoints Draw a torus passing through three given points. Usage import numpy as np import pyvista as pv from torus_three_points.main import

2 Nov 19, 2021
A 3D structural engineering finite element library for Python.

An easy to use elastic 3D structural engineering finite element analysis library for Python.

Craig 220 Dec 27, 2022
python app to turn a photograph into a cartoon

Draw This. Draw This is a polaroid camera that draws cartoons. You point, and shoot - and out pops a cartoon; the camera's best interpretation of what

Dan Macnish 2k Dec 19, 2022