Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

mapomatic

Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

One of the main painpoints in executing circuits on IBM Quantum hardware is finding the best qubit mapping. For a given circuit, one typically tries to pick the best initial_layout for a given target system, and then SWAP maps using that set of qubits as the starting point. However there are a couple of issues with that execution model. First, an initial_layout seletected, for example with respect to the noise characteristics of the system, need not be optimal for the SWAP mapping. In practice this leads to either low-noise layouts with extra SWAP gates inserted in the circuit, or optimally SWAP mapped circuits on (possibly) lousy qubits. Second, there is no way to know if the system you targeted in the compilation is actually the best one to execute the compiled circuit on. With 20+ quantum systems, it is hard to determine which device is actually ideal for a given problem.

mapomatic tries to tackle these issues in a different way. mapomatic is a post-compilation routine that finds the best low noise sub-graph on which to run a circuit given one or more quantum systems as target devices. Once compiled, a circuit has been rewritten so that its two-qubit gate structure matches that of a given sub-graph on the target system. mapomatic then searches for matching sub-graphs using the VF2 mapper in Qiskit (retworkx actually), and uses a heuristic to rank them based on error rates determined by the current calibration data. That is to say that given a single target system, mapomatic will return the best set of qubits on which to execute the compiled circuit. Or, given a list of systems, it will find the best system and set of qubits on which to run your circuit. Given the current size of quantum hardware, and the excellent performance of the VF2 mapper, this whole process is actually very fast.

Usage

To begin we first import what we need and load our IBM Quantum account.

import numpy as np
from qiskit import *
import mapomatic as mm

IBMQ.load_account()

Second we will select a provider that has one or more systems of interest in it:

provider = IBMQ.get_provider(group='deployed')

We then go through the usual step of making a circuit and calling transpile on a given backend:

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure_all()

Here we use optimization_level=3 as it is the best overall. It is also not noise-aware though, and thus can select lousy qubits on which to do a good SWAP mapping

trans_qc = transpile(qc, provider.get_backend('ibm_auckland'),optimization_level=3)

Now, a call to transpile inflates the circuit to the number of qubits in the target system. For small problems like the example here, this prevents us from finding the smaller sub-graphs. Thus we need to deflate the circuit down to just the number of active qubits:

small_qc = mm.deflate_circuit(trans_qc)

This deflated circuit, along with one or more backends can now be used to find the ideal system and mapping. Here we will look over all systems in the provider:

backends = provider.backends()

mm.best_mapping(small_qc, backends)

that returns a tuple with the target layout, system, and the computed error score:

([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036)

You can then use the best layout in a new call to transpile which will then do the desired mapping for you. Alternatively, we can ask for the best mapping on all systems, yielding a list sorted in order from best to worse:

mm.best_mapping(small_qc, backends, successors=True)
[([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036),
 ([7, 10, 4, 1, 0], 'ibm_hanoi', 0.11217956761629977),
 ([5, 6, 3, 1, 2], 'ibm_lagos', 0.1123755285308975),
 ([7, 6, 10, 12, 15], 'ibmq_mumbai', 0.13708593236124922),
 ([3, 2, 5, 8, 9], 'ibmq_montreal', 0.13762962991865924),
 ([2, 1, 3, 5, 8], 'ibm_cairo', 0.1423752001642351),
 ([1, 2, 3, 5, 6], 'ibmq_casablanca', 0.15623594190953083),
 ([4, 3, 5, 6, 7], 'ibmq_brooklyn', 0.16468576058762707),
 ([7, 6, 10, 12, 15], 'ibmq_guadalupe', 0.17186581811649904),
 ([5, 3, 8, 11, 14], 'ibmq_toronto', 0.1735555283027388),
 ([5, 4, 3, 1, 0], 'ibmq_jakarta', 0.1792325518776976),
 ([2, 3, 1, 0, 14], 'ibm_washington', 0.2078576175452339),
 ([1, 0, 2, 3, 4], 'ibmq_bogota', 0.23973220166838316),
 ([1, 2, 3, 5, 6], 'ibm_perth', 0.31268969778002176),
 ([3, 4, 2, 1, 0], 'ibmq_manila', 0.3182338194159915),
 ([1, 0, 2, 3, 4], 'ibmq_santiago', 1.0)]

Because of the stochastic nature of the SWAP mapping, the optimal sub-graph may change over repeated compilations.

Getting optimal results

Because the SWAP mappers in Qiskit are stochastic, the number of inserted SWAP gates can vary with each run. The spread in this number can be quite large, and can impact the performance of your circuit. It is thus beneficial to transpile many instances of a circuit and take the best one. For example:

trans_qc_list = transpile([qc]*20, provider.get_backend('ibm_auckland'), optimization_level=3)

best_cx_count = [circ.count_ops()['cx'] for circ in trans_qc_list]
best_cx_count
[10, 13, 10, 7, 7, 10, 10, 7, 10, 7, 10, 10, 10, 10, 5, 7, 6, 13, 7, 10]

We obviously want the one with minimum CNOT gates here:

best_idx = np.where(best_cx_count == np.min(best_cx_count))[0][0]
best_qc = trans_qc_list[best_idx] 

We can then use this best mapped circuit to find the ideal qubit candidates via mapomatic.

best_small_qc = mm.deflate_circuit(best_qc)
mm.best_mapping(best_small_qc, backends, successors=True)
[([11, 13, 14, 16, 19], 'ibm_auckland', 0.07634155667667142),
 ([2, 0, 1, 4, 7], 'ibm_hanoi', 0.0799012562006044),
 ([4, 6, 5, 3, 1], 'ibm_lagos', 0.09374259142721897),
 ([10, 15, 12, 13, 14], 'ibm_cairo', 0.0938958618334792),
 ([5, 9, 8, 11, 14], 'ibmq_montreal', 0.09663069814643488),
 ([10, 6, 7, 4, 1], 'ibmq_mumbai', 0.10253149958591112),
 ([10, 15, 12, 13, 14], 'ibmq_guadalupe', 0.11075230351892806),
 ([11, 5, 4, 3, 2], 'ibmq_brooklyn', 0.13179514610612808),
 ([0, 2, 1, 3, 5], 'ibm_perth', 0.13309987649094324),
 ([4, 6, 5, 3, 1], 'ibmq_casablanca', 0.13570907147053013),
 ([2, 0, 1, 3, 5], 'ibmq_jakarta', 0.14449169384159954),
 ([5, 9, 8, 11, 14], 'ibmq_toronto', 0.1495199193756318),
 ([2, 0, 1, 3, 4], 'ibmq_quito', 0.16858894163955718),
 ([0, 2, 1, 3, 4], 'ibmq_belem', 0.1783430267967986),
 ([0, 2, 1, 3, 4], 'ibmq_lima', 0.20380730100751476),
 ([23, 25, 24, 34, 43], 'ibm_washington', 0.23527393065514557)]
Owner
Qiskit Partners
Qiskit Partners
This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds

This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds. Inspired by the work of Edward Tufte.

Nico Schlömer 205 Jan 07, 2023
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
Attractors is a package for simulation and visualization of strange attractors.

attractors Attractors is a package for simulation and visualization of strange attractors. Installation The simplest way to install the module is via

Vignesh M 45 Jul 31, 2022
Because trello only have payed options to generate a RunUp chart, this solves that!

Trello Runup Chart Generator The basic concept of the project is that Corello is pay-to-use and want to use Trello To-Do/Doing/Done automation with gi

Rômulo Schiavon 1 Dec 21, 2021
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
Rick and Morty Data Visualization with python

Rick and Morty Data Visualization For this project I looked at data for the TV show Rick and Morty Number of Episodes at a Certain Location Here is th

7 Aug 29, 2022
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
Handout for the tutorial "Creating publication-quality figures with matplotlib"

Handout for the tutorial "Creating publication-quality figures with matplotlib"

JB Mouret 1.9k Jan 02, 2023
The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Timescale NFT Starter Kit The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualiz

Timescale 102 Dec 24, 2022
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
:bowtie: Create a dashboard with python!

Installation | Documentation | Gitter Chat | Google Group Bowtie Introduction Bowtie is a library for writing dashboards in Python. No need to know we

Jacques Kvam 753 Dec 22, 2022
matplotlib: plotting with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Check out our home page for more inform

Matplotlib Developers 16.7k Jan 08, 2023
2D maze path solver visualizer implemented with python

2D maze path solver visualizer implemented with python

SS 14 Dec 21, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
GitHub Stats Visualizations : Transparent

GitHub Stats Visualizations : Transparent Generate visualizations of GitHub user and repository statistics using GitHub Actions. ⚠️ Disclaimer The pro

YuanYap 7 Apr 05, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
Painlessly create beautiful matplotlib plots.

Announcement Thank you to everyone who has used prettyplotlib and made it what it is today! Unfortunately, I no longer have the bandwidth to maintain

Olga Botvinnik 1.6k Jan 06, 2023
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022