social humanoid robots with GPGPU and IoT

Overview

Social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT

Paper Authors

Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balakrishnan Prabhakaran, Yonas Tadesse

Initial design and development

UT Dallas senior design team

Sharon Choi, Manpreet Dhot, Mark Cordova, Luis Hall-Valdez, and Stephen Brooks

A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture

Currently, most social robots interact with their surroundings humans through sensors that are integral parts of the robots, which limits the usability of the sensors, human-robot interaction, and interchangeability. A wearable sensor garment that fits many robots is needed in many applications. This article presents an affordable wearable sensor vest, and an open-source software architecture with the Internet of Things (IoT) for social humanoid robots. The vest consists of touch, temperature, gesture, distance, vision sensors, and a wireless communication module. The IoT feature allows the robot to interact with humans locally and over the Internet. The designed architecture works for any social robot that has a general purpose graphics processing unit (GPGPU), I2C/SPI buses, Internet connection, and the Robotics Operating System (ROS). The modular design of this architecture enables developers to easily add/remove/update complex behaviors. The proposed software architecture provides IoT technology, GPGPU nodes, I2C and SPI bus mangers, audio-visual interaction nodes (speech to text, text to speech, and image understanding), and isolation between behavior nodes and other nodes. The proposed IoT solution consists of related nodes in the robot, a RESTful web service, and user interfaces. We used the HTTP protocol as a means of two-way communication with the social robot over the Internet. Developers can easily edit or add nodes in C, C++, and Python programming languages. Our architecture can be used for designing more sophisticated behaviors for social humanoid robots.

Cite as:

DOI

https://doi.org/10.1016/j.robot.2020.103536

IEEE

M. Jafarzadeh, S. Brooks, S. Yu, B. Prabhakaran, and Y. Tadesse, “A wearable sensor vest for social humanoid robots with GPGPU, IOT, and Modular Software Architecture,” Robotics and Autonomous Systems, vol. 139, p. 103536, 2021.

MLA

Jafarzadeh, Mohsen, et al. "A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture." Robotics and Autonomous Systems 139 (2021): 103536.

APA

Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B., & Tadesse, Y. (2021). A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems, 139, 103536.

Chicago

Jafarzadeh, Mohsen, Stephen Brooks, Shimeng Yu, Balakrishnan Prabhakaran, and Yonas Tadesse. "A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture." Robotics and Autonomous Systems 139 (2021): 103536.

Harvard

Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B. and Tadesse, Y., 2021. A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems, 139, p.103536.

Vancouver

Jafarzadeh M, Brooks S, Yu S, Prabhakaran B, Tadesse Y. A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems. 2021 May 1;139:103536.

Bibtex

@article{Jafarzadeh2021robots,
title = {A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture},
journal = {Robotics and Autonomous Systems},
volume = {139},
pages = {103536},
year = {2021},
issn = {0921-8890},
doi = {https://doi.org/10.1016/j.robot.2020.103536},
url = {https://www.sciencedirect.com/science/article/pii/S0921889019306323},
author = {Mohsen Jafarzadeh and Stephen Brooks and Shimeng Yu and Balakrishnan Prabhakaran and Yonas Tadesse},
}

License

Copyright (c) 2020 Mohsen Jafarzadeh. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by Mohsen Jafarzadeh, Stephen Brooks, Sharon Choi, Manpreet Dhot, Mark Cordova, Luis Hall-Valdez, and Shimeng Yu.
  4. Neither the name of the Mohsen Jafarzadeh nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY MOHSEN JAFARZADEH "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MOHSEN JAFARZADEH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
http://www.mohsen-jafarzadeh.com
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Ian Covert 130 Jan 01, 2023
Özlem Taşkın 0 Feb 23, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022