Beam designs for infinite Z 3D printers

Overview

A 3D printed beam that is as stiff as steel

A while ago Naomi Wu 机械妖姬 very kindly sent us one of Creality's infinite-Z belt printers. Lots of people have printed long I beams on this type of machine, but we thought that we'd write a Python FreeCAD program to generate parametric beams more suitable for 3D printing, taking advantage of the fact that complexity is more or less free with this technology and that infinite-Z belt printers can print many overhanging shapes without support material. The result is a beam that is about as stiff as a steel beam of the same weight.

The image above shows an example of the Python output. All you need to specify is the length, width, and height, the thickness of the struts, and the diameter and number of the screw holes in the mounting blocks at the ends. The program then automatically generates the entire beam.

The central section consists of a row of open boxes, each of which is decomposed into tetrahedra. This effectively means that the entire shape is built from tetrahedra - the strongest shape - and also that most of the material is on the outer faces which gives a high second-moment of cross-sectional area for bending resistance in all directions.  The diagonals are angled so that a belt printer with a 45o Z movement can print the entire structure without support material.

The blocks at the ends are for bolting the beams to each other or to other items. The rings of 12 small holes shown allow any orientation in increments of 30o. The large holes are to allow wiring, tubes and other services to be run down the middle of the beams and connect up at the ends, or to allow things such as drive shafts to be accommodated.

It turns out that FreeCAD can't model the rings of small holes. If you want to skip a technical explanation of why this is so then just know that there's a work-round and ignore the italic section that follows.

The image below shows the shape of all the small holes that needs to be subtracted from the end blocks.

As you can see, there are a lot of common tangencies where cylinders cross. When FreeCAD throws the calculation of these to Open Cascade, which is the geometric modeller that FreeCAD uses to represent shapes, it goes away and gets lost in its own thoughts (CPU: 100%...) and you never hear from it again. I (Adrian) don't think this is really a bug in Open Cascade; any boundary-representation (B-rep) geometric modeller would probably have the same problem. Because (as the name implies) B-rep modellers represent shapes by recording the topology and geometry of their surfaces, they have to put a lot of effort into doing things like working out the curves of intersection between surfaces, and keeping all the shape topology consistent while this is done. In some cases this is quite literally impossible. For example there is no closed-form solution to working out the curve of intersection between two NURBS surfaces; that always has to be approximated. Even for cylinder-cylinder intersections, things can get complicated (look at the topological stitch-lines running along the cylinders in the picture; these all have to be matched up).

Set-theoretic (or CSG) geometric modellers have none of these problems because they don't represent the surfaces of objects; they represent their solidity. In their simplest form they can only answer one question: given a point (x, y, z), is it inside the solid part of the object or outside? - a so-called membership test. (In practice set-theoretic modellers can all do much more than this.) And they do membership-tests with rock-solid certainty. Unfortunately they are rarely used in CAD systems, except as a means of input. The reasons for this are historical rather than technical. For example the invention of the hardware depth-buffer, which allows computer graphics systems to make pictures of large numbers of triangles blindingly fast, favoured the early development of systems that represent surfaces (which are easy to triangulate). If instead a hardware ray-tracer had been implemented, then set-theoretic modellers (which are natural choices for ray tracing) might have come to dominate. (I wrote a set-theoretic modeller called SvLis in C++ about three decades ago; if you want to go mad see if you can get it going with a modern C++ compiler. If you succeed, DM me...)

The work-round in FreeCAD that allows the cylinders to be dealt with is as simple as it is nasty. The cylinder radii are perturbed a tiny bit at random:

cyl = Part.makeCylinder(d/2 + random.uniform(-0.01, 0.01), z + 0.2)

This means that what were common tangencies no longer are, quite . The perturbation is well below the resolution of 3D printing.

The following image shows the beams being printed in PLA.

When it was done, we subjected one to a bending test using weights and a dial gauge to measure deflection.

Note the pieces of wood on the left; if only we had some way to 3D-print structural parts...

The beam was held and deflected sideways so it couldn't slip in the vice. Here are the results:

The equation is that of the least-squares fit straight line. The effective length of the beam (ignoring the clamped end) was 175 mm. Its stiffness was 1.02 x 10-4 mN-1 from the graph. This meant that its flexural rigidity (EI) was 17.5 Nm2 (where E is Young's modulus in Pa and I is the second moment of area in m4). Thus we can work out that an equivalent steel beam would be 5 mm square. (That is to say, a steel beam with the same EI value.)

The printed beam weighed 47.7 grams. Coincidentally a 5 mm square steel beam of the same length (including the clamped end) would weigh about the same (47 grams), so we have made a printed beam that is about as stiff as the same weight of steel.

The printed beam was physically bigger than its steel equivalent, of course. This is to be expected as PLA has a much lower elastic modulus than steel. But printing allows any size easily to be created, it allows services to be run up the insides, and it allows a fancy pattern of attachments and screw holes to be created at the ends, all automatically.

It would also allow a beam of beams to be printed. Because it needs no support, this beam design could be used as the struts of a much bigger beam in the same pattern. This would make a fractal beam...

Our Python program that makes the beams in FreeCAD is in the Software directory of this repository in the file square-beam.py. The file Z-beam.scad is an OpenSCAD set-theoretic (CSG) version by David Eccles that he did a few hours after we released this. We all love open-source!

It has not escaped our attention that beams of this sort would be ideal components for building a RepRap infinite-Z belt printer.

Owner
RepRap Ltd
RepRap Ltd specialises in research and development in self-replicating open-source 3D printing.
RepRap Ltd
Hardware-accelerated ROS2 packages for camera image processing.

Isaac ROS Image Pipeline Overview This metapackage offers similar functionality as the standard, CPU-based image_pipeline metapackage, but does so by

NVIDIA Isaac ROS 52 Dec 15, 2022
Event-based hardware simulation framework

An event-based multi-device simulation framework providing configuration and orchestration of complex multi-device simulations.

Diamond Light Source Controls Group 3 Feb 01, 2022
Smart EQ connect - Custom Integration for Home Assistant

Smart EQ Connect platform as a Custom Component for Home Assistant.

Rene Nulsch 2 Jan 04, 2022
A python module for interacting with rolimon's, a roblox value site.

rpi - rolimon's python interaction rpi is an open source python-based rolimon's api wrapper. It provides an end-to-end pipeline in which each componen

Acier 11 Nov 08, 2022
Make your MacOS keyboard brightness fade in and out

Make your MacOS keyboard brightness fade in and out. (It's working depends on the Kbrightness file, which only works for 2015 Macs, so this will only work on 2015 Macs.)

1 Dec 16, 2021
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
Get input from OLED Joystick, Runs command, Displays output on OLED Screen (Great for P4wnP1)

p4wnsolo-joyterm Gets text input from OLED Joystick Runs the command you typed Displays output on OLED Screen (Great for P4wnP1 - even better on Raspb

PawnSolo 7 Dec 19, 2022
A ch341dll Wrap is for using in Python 32bits windows to access I2C SPI and MDIO (by GPIO), and Demo with display PC sreen on OLED by i2c or SPI .

ch341dll_wrap_typcal_app A ch341dll Wrap is for using in Python 32bits windows to access I2C SPI and MDIO (by GPIO). In addition, I provided 3 Demo. I

13 Jan 02, 2023
Connect a TeslaMate instance to Home Assistant, using MQTT

TeslaBuddy Connect a TeslaMate instance to Home Assistant, using MQTT. It allows basic control of your Tesla vehicle via Home Assistant (currently, ju

4 May 23, 2022
ModbusTCP2MQTT - Sungrow & SMA Solar Inverter addon for Home Assistant

ModbusTCP2MQTT Sungrow & SMA Solar Inverter addon for Home Assistant This addon will connect directly to your Inverter using Modbus TCP. Support model

Teny Smart 40 Dec 21, 2022
Examples to accompany the

Examples to accompany the "Raspberry Pi Pico Python SDK" book published by Raspberry Pi Trading, which forms part of the technical documentation in support of Raspberry Pi Pico and the MicroPython po

Raspberry Pi 589 Jan 08, 2023
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
Ingeniamotion is a library that works over ingenialink and aims to simplify the interaction with Ingenia's drives.

Ingeniamotion Ingeniamotion is a library that works over ingenialink and aims to simplify the interaction with Ingenia's drives. Requirements Python 3

Ingenia Motion Control 7 Dec 15, 2022
This allows you to record keyboard and mouse input, and play it back using pynput.

Record and Play with Python! This allows you to record keyboard and mouse input, and play it back (with looping) using pynput. It allows for automatio

George Jensen 45 Jan 02, 2023
How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Configuring PCIe Passthrough for Nested Virtualization on Proxmox Summary: If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with ne

Travis Johnson 6 Aug 30, 2022
This Home Assistant custom component adds support for controlling Midea dehumidiferes on local network.

This is a custom component for Home assistant that adds support for Midea dehumidifier appliances via the local area network. midea-dehumidifier-lan H

Nenad Bogojevic 97 Jan 08, 2023
Playing diabolo with two robot arms in ROS + Gazebo

Playing diabolo with robots This repository holds the ROS packages for playing diabolo with two UR5e robot arms on ROS Melodic (Ubuntu 18.04). Read ou

23 Dec 18, 2022
Simple Weather Check base on Hefeng api, Work on raspberry Pi

Simple Weather Check base on Hefeng api, Work on raspberry Pi

Retr0mous 28 Sep 17, 2022
Turns a compatible Raspberry Pi device into a smart USB drive for PS4/PS5.

PSBerry A WIP project for Raspberry Pi, which turns a compatible RPI device into a smart USB drive for PS4/PS5. Allows for save management of PS4 game

Filip Tomaszewski 2 Jan 15, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023