Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

Overview

AlbUNet-1D-2D-Tensorflow-Keras

This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed in Tensorflow-Keras. The code supports Deep Supervision, AutoEncoder mode, Guided Attention and other options. The segmentation models can be used for binary or multiclass segmentation, or for regression tasks.

Models supported [1]

  1. AlbUNet18
  2. AlbUNet34
  3. AlbUNet50
  4. AlbUNet101
  5. AlbUNet152

AlbUNet

AlbUNet has a ResNet based Encoder and traditional UNet based Decoder, as shown in the Figure below for ALbUNet34, which uses ResNet34 as the Encoder.
AlbUNet Architecture
AlbUNet Architecture

Supported Features

The speciality about this model is its flexibility, such as:

  1. The user can choose any of the 5 available AlbUNet variants for either 1D or 2D Segmentation tasks.
  2. The models can be used for Binary or Multi-Class Classification, or Regression type Segmentation tasks.
  3. The models allow Deep Supervision [2] with flexibility during Segmentation.
  4. The segmentation models can also be used as Autoencoders [3] for Feature Extraction.
  5. The Segmentation Models can be Attention Guided [4].
  6. Number of input kernel/filter, commonly known as the Width of the model can be varied.
  7. Number of classes for Classification tasks and number of extracted features for Regression tasks can be varied.
  8. Number of Channels in the Input Dataset can be varied.

Mentionable that the 2D version of AlbUNet can also be used in Transfer Learning from previously trained weights (e.g., ImageNet), just the encoder blocks should be replaced with the trained model layers.

References

[1] A. Shvets, V. Iglovikov, A. Rakhlin, and A. A. Kalinin, “Angiodysplasia detection and localization using deep convolutional neural networks,” arXiv.org, 21-Apr-2018. [Online]. Available: https://arxiv.org/abs/1804.08024. [2] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. Arxiv-vanity.com. Retrieved 30 August 2021, from https://www.arxiv-vanity.com/papers/1912.05074/.
[3] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv.org. Retrieved 30 August 2021, from https://arxiv.org/abs/1807.10165.
[4] M. Noori, A. Bahri, and K. Mohammadi, “Attention-guided version of 2D UNET for automatic brain tumor segmentation,” arXiv.org, 04-Apr-2020. [Online]. Available: https://arxiv.org/abs/2004.02009.

Owner
Sakib Mahmud
Research Assistant | Electrical Engineer | Machine Learning Engineer
Sakib Mahmud
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
LBK 20 Dec 02, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022