Zero-Cost Proxies for Lightweight NAS

Overview

Zero-Cost-NAS

Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS
tl;dr A single minibatch of data is used to score neural networks for NAS instead of performing full training.

In this README, we provide:

If you have any questions, please open an issue or email us. (last update: 02.02.2021)

Summary

Intro. To perform neural architecture search (NAS), deep neural networks (DNNs) are typically trained until a final validation accuracy is computed and used to compare DNNs to each other and select the best one. However, this is time-consuming because training takes multiple GPU-hours/days/weeks. This is why a proxy for final accuracy is often used to speed up NAS. Typically, this proxy is a reduced form of training (e.g. EcoNAS) where the number of epochs is reduced, a smaller model is used or the training data is subsampled.

Proxies. Instead, we propose a series of "zero-cost" proxies that use a single-minibatch of data to score a DNN. These metrics are inspired by recent pruning-at-initialization literature, but are adapted to score an entire DNN and work within a NAS setting. When compared against econas (see orange pentagon in plot below), our zero-cost metrics take ~1000X less time to run but are better-correlated with final validation accuracy (especially synflow and jacob_cov), making them better (and much cheaper!) proxies for use within NAS. Even when EcoNAS is tuned specifically for NAS-Bench-201 (see econas+ purple circle in the plot), our vote zero-cost proxy is still better-correlated and is 3 orders of magnitude cheaper to compute.

Figure 1: Correlation of validation accuracy to final accuracy during the first 12 epochs of training (blue line) for three CIFAR-10 on the NAS-Bench-201 search space. Zero-cost and EcoNAS proxies are also labeled for comparison.

zero-cost vs econas

Zero-Cost NAS We use the zero-cost metrics to enhance 4 existing NAS algorithms, and we test it out on 3 different NAS benchmarks. For all cases, we achieve a new SOTA (state of the art result) in terms of search speed. We incorporate zero-cost proxies in two ways: (1) warmup: Use proxies to initialize NAS algorithms, (2) move proposal: Use proxies to improve the selection of the next model for evaluation. As Figure 2 shows, there is a significant speedup to all evaluated NAS algorithms.

Figure 2: Zero-Cost warmup and move proposal consistently improves speed and accuracy of 4 different NAS algorithms.

Zero-Cost-NAS speedup

For more details, please take a look at our paper!

Running the Code

  • Install PyTorch for your system (v1.5.0 or later).
  • Install the package: pip install . (add -e for editable mode) -- note that all dependencies other than pytorch will be automatically installed.

API

The main function is find_measures below. Given a neural net and some information about the input data (dataloader) and loss function (loss_fn) it returns an array of zero-cost proxy metrics.

def find_measures(net_orig,                  # neural network
                  dataloader,                # a data loader (typically for training data)
                  dataload_info,             # a tuple with (dataload_type = {random, grasp}, number_of_batches_for_random_or_images_per_class_for_grasp, number of classes)
                  device,                    # GPU/CPU device used
                  loss_fn=F.cross_entropy,   # loss function to use within the zero-cost metrics
                  measure_names=None,        # an array of measure names to compute, if left blank, all measures are computed by default
                  measures_arr=None):        # [not used] if the measures are already computed but need to be summarized, pass them here

The available zero-cost metrics are in the measures directory. You can add new metrics by simply following one of the examples then registering the metric in the load_all function. More examples of how to use this function can be found in the code to reproduce results (below). You can also modify data loading functions in p_utils.py

Reproducing Results

NAS-Bench-201

  1. Download the NAS-Bench-201 dataset and put in the data directory in the root folder of this project.
  2. Run python nasbench2_pred.py with the appropriate cmd-line options -- a pickle file is produced with zero-cost metrics (see notebooks folder on how to use the pickle file.
  3. Note that you need to manually download ImageNet16 and put in _datasets/ImageNet16 directory in the root folder. CIFAR-10/100 will be automatically downloaded.

NAS-Bench-101

  1. Download the data directory and save it to the root folder of this repo. This contains pre-cached info from the NAS-Bench-101 repo.
  2. [Optional] Download the NAS-Bench-101 dataset and put in the data directory in the root folder of this project and also clone the NAS-Bench-101 repo and install the package.
  3. Run python nasbench1_pred.py. Note that this takes a long time to go through ~400k architectures, but precomputed results are in the notebooks folder (with a link to the results).

PyTorchCV

  1. Run python ptcv_pred.py

NAS-Bench-ASR

Coming soon...

NAS with Zero-Cost Proxies

For the full list of NAS algorithms in our paper, we used a different NAS tool which is not publicly released. However, we included a notebook nas_examples.ipynb to show how to use zero-cost proxies to speed up aging evolution and random search methods using both warmup and move proposal.

Citation

@inproceedings{
  abdelfattah2021zerocost,
  title={{Zero-Cost Proxies for Lightweight NAS}},
  author={Mohamed S. Abdelfattah and Abhinav Mehrotra and {\L}ukasz Dudziak and Nicholas D. Lane},
  booktitle={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
SamsungLabs
SAMSUNG
SamsungLabs
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022