Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Overview

Head Detector

Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection module can be installed using pip in order to be able to plug-and-play with HeadHunter-T.

Requirements

  1. Nvidia Driver >= 418

  2. Cuda 10.0 and compaitible CudNN

  3. Python packages : To install the required python packages; conda env create -f head_detection.yml.

  4. Use the anaconda environment head_detection by activating it, source activate head_detection or conda activate head_detection.

  5. Alternatively pip can be used to install required packages using pip install -r requirements.txt or update your existing environment with the aforementioned yml file.

Training

  1. To train a model, define environment variable NGPU, config file and use the following command

$python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env train.py --cfg_file config/config_chuman.yaml --world_size $NGPU --num_workers 4

  1. Training is currently supported over (a) ScutHead dataset (b) CrowdHuman + ScutHead combined, (c) Our proposed CroHD dataset. This can be mentioned in the config file.

  2. To train the model, config files must be defined. More details about the config files are mentioned in the section below

Evaluation and Testing

  1. Unlike the training, testing and evaluation does not have a config file. Rather, all the parameters are set as argument variable while executing the code. Refer to the respective files, evaluate.py and test.py.
  2. evaluate.py evaluates over the validation/test set using AP, MMR, F1, MODA and MODP metrics.
  3. test.py runs the detector over a "bunch of images" in the testing set for qualitative evaluation.

Config file

A config file is necessary for all training. It's built to ease the number of arg variable passed during each execution. Each sub-sections are as elaborated below.

  1. DATASET

    1. Set the base_path as the parent directory where the dataset is situated at.
    2. Train and Valid are .txt files that contains relative path to respective images from the base_path defined above and their corresponding Ground Truth in (x_min, y_min, x_max, y_max) format. Generation files for the three datasets can be seen inside data directory. For example,
    /path/to/image.png
    x_min_1, y_min_1, x_max_1, y_max_1
    x_min_2, y_min_2, x_max_2, y_max_2
    x_min_3, y_min_3, x_max_3, y_max_3
    .
    .
    .
    
    1. mean_std are RGB means and stdev of the training dataset. If not provided, can be computed prior to the start of the training
  2. TRAINING

    1. Provide pretrained_model and corresponding start_epoch for resuming.
    2. milestones are epoch at which the learning rates are set to 0.1 * lr.
    3. only_backbone option loads just the Resnet backbone and not the head. Not applicable for mobilenet.
  3. NETWORK

    1. The mentioned parameters are as described in experiment section of the paper.
    2. When using median_anchors, the anchors have to be defined in anchors.py.
    3. We experimented with mobilenet, resnet50 and resnet150 as alternative backbones. This experiment was not reported in the paper due to space constraints. We found the accuracy to significantly decrease with mobilenet but resnet50 and resnet150 yielded an almost same performance.
    4. We also briefly experimented with Deformable Convolutions but again didn't see noticable improvements in performance. The code we used are available in this repository.

Note :

This codebase borrows a noteable portion from pytorch-vision owing to the fact some of their modules cannot be "imported" as a package.

Citation :

@InProceedings{Sundararaman_2021_CVPR,
    author    = {Sundararaman, Ramana and De Almeida Braga, Cedric and Marchand, Eric and Pettre, Julien},
    title     = {Tracking Pedestrian Heads in Dense Crowd},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {3865-3875}
}
Owner
Ramana Subramanyam
Ramana Subramanyam
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
OCR of Chicago 1909 Renumbering Plan

Requirements: Python 3 (probably at least 3.4) pipenv (pip3 install pipenv) tesseract (brew install tesseract, at least if you have a mac and homebrew

ted whalen 2 Nov 21, 2021
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
Pixel art search engine for opengameart

Pixel Art Reverse Image Search for OpenGameArt What does the final search look like? The final search with an example can be found here. It looks like

Eivind Magnus Hvidevold 92 Nov 06, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
A community-supported supercharged version of paperless: scan, index and archive all your physical documents

Paperless-ngx Paperless-ngx is a document management system that transforms your physical documents into a searchable online archive so you can keep,

5.2k Jan 04, 2023
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 185 Jan 01, 2023
Converts an image into funny, smaller amongus characters

SussyImage Converts an image into funny, smaller amongus characters Demo Mona Lisa | Lona Misa (Made up of AmongUs characters) API I've also added an

Dhravya Shah 14 Aug 18, 2022