Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Overview

Reproducing-BowNet

Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper: Learning Representations by Predicting Bags of Visual Words by Gidaris et al S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord, “Learning Representations by Predicting Bags of Visual Words,” ArXiv, 27-Feb-2020. [Online]. Available: https://arxiv.org/abs/2002.12247. [Accessed: 15-Nov-2020].

Group project for UWaterloo course SYDE 671 - Advanced Image Processing by Harry Nguyen, Stone Yun, Hisham Mohammad

Code base is implemented with PyTorch. Dataloader is adapted from Github released by authors of the RotNet paper: https://github.com/gidariss/FeatureLearningRotNet

Our model definitions are in model.py. Custom loss and layer class definitions are in layers.py

See dependencies.txt for list of libraries that need to be installed. Pip install or conda install both work

Before running the experiments:

Inside the project code, create a folder ./datasets/CIFAR, download the dataset CIFAR100 from https://www.cs.toronto.edu/~kriz/cifar.html and put in the folder.

For running the code:

Pretrained weights of BowNet and RotNet from our best results are in saved_weights directory. To generate your own RotNet checkpoint, running rotation_prediction_training.py will train a new RotNet from scratch. The checkpoint is saved as rotnet1_checkpoint.pt

To run rotnet_linearclf.py or rotnet_nonlinearclf.py, you need to have the checkpoint file of pretrained RotNet, download here (eg. saved_weights/rotnet.pt). These scripts load the pretrained RotNet and use its feature maps to train a classifier on CIFAR-100 prediction.

$python rotnet_linearclf.py --checkpoint /path/to/checkpoint

$python rotnet_nonlinearclf.py --checkpoint /path/to/checkpoint

bownet_plus_linearclf_cifar_training.py takes pretrained BowNet and uses feature maps to train linear classifier on CIFAR-100. kmeans_cluster_and_bownet_training.py loads pretrained RotNet, performs KMeans clustering of feature map, then trains BowNet on BOW reconstruction. Thus, you'll need pretrained BowNet and RotNet checkpoints respectively.

We also include a pre-computed RotNet codebook for K = 2048 clusters. If you include the path to it for kmeans_cluster_and_bownet_training.py the script will skip the codebook generation step and go straight to BOW reconstruction training

$python bownet_plus_linearclf_cifar_training.py --checkpoint /path/to/bownet/checkpoint

$python kmeans_cluster_and_bownet_training.p --checkpoint /path/to/rotnet/checkpoint [optional: --rotnet_vocab /path/to/rotnet/vocab.npy]

Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022