Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Overview

Reproducing-BowNet

Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper: Learning Representations by Predicting Bags of Visual Words by Gidaris et al S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord, “Learning Representations by Predicting Bags of Visual Words,” ArXiv, 27-Feb-2020. [Online]. Available: https://arxiv.org/abs/2002.12247. [Accessed: 15-Nov-2020].

Group project for UWaterloo course SYDE 671 - Advanced Image Processing by Harry Nguyen, Stone Yun, Hisham Mohammad

Code base is implemented with PyTorch. Dataloader is adapted from Github released by authors of the RotNet paper: https://github.com/gidariss/FeatureLearningRotNet

Our model definitions are in model.py. Custom loss and layer class definitions are in layers.py

See dependencies.txt for list of libraries that need to be installed. Pip install or conda install both work

Before running the experiments:

Inside the project code, create a folder ./datasets/CIFAR, download the dataset CIFAR100 from https://www.cs.toronto.edu/~kriz/cifar.html and put in the folder.

For running the code:

Pretrained weights of BowNet and RotNet from our best results are in saved_weights directory. To generate your own RotNet checkpoint, running rotation_prediction_training.py will train a new RotNet from scratch. The checkpoint is saved as rotnet1_checkpoint.pt

To run rotnet_linearclf.py or rotnet_nonlinearclf.py, you need to have the checkpoint file of pretrained RotNet, download here (eg. saved_weights/rotnet.pt). These scripts load the pretrained RotNet and use its feature maps to train a classifier on CIFAR-100 prediction.

$python rotnet_linearclf.py --checkpoint /path/to/checkpoint

$python rotnet_nonlinearclf.py --checkpoint /path/to/checkpoint

bownet_plus_linearclf_cifar_training.py takes pretrained BowNet and uses feature maps to train linear classifier on CIFAR-100. kmeans_cluster_and_bownet_training.py loads pretrained RotNet, performs KMeans clustering of feature map, then trains BowNet on BOW reconstruction. Thus, you'll need pretrained BowNet and RotNet checkpoints respectively.

We also include a pre-computed RotNet codebook for K = 2048 clusters. If you include the path to it for kmeans_cluster_and_bownet_training.py the script will skip the codebook generation step and go straight to BOW reconstruction training

$python bownet_plus_linearclf_cifar_training.py --checkpoint /path/to/bownet/checkpoint

$python kmeans_cluster_and_bownet_training.p --checkpoint /path/to/rotnet/checkpoint [optional: --rotnet_vocab /path/to/rotnet/vocab.npy]

NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022