Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

Related tags

Deep LearningKEPLER
Overview

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

Source code for TACL 2021 paper KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation.

Requirements

  • PyTorch version >= 1.1.0
  • Python version >= 3.5
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • For faster training install NVIDIA's apex library with the --cuda_ext option

Installation

This repo is developed on top of fairseq and you can install our version like installing fairseq from source:

pip install cython
git clone https://github.com/THU-KEG/KEPLER
cd KEPLER
pip install --editable .

Pre-training

Preprocessing for MLM data

Refer to the RoBERTa document for the detailed data preprocessing of the datasets used in the Masked Language Modeling (MLM) objective.

Preprocessing for KE data

The pre-training with KE objective requires the Wikidata5M dataset. Here we use the transductive split of Wikidata5M to demonstrate how to preprocess the KE data. The scripts used below are in this folder.

Download the Wikidata5M transductive data and its corresponding corpus, and then uncompress them:

wget -O wikidata5m_transductive.tar.gz https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz?dl=1
wget -O wikidata5m_text.txt.gz https://www.dropbox.com/s/7jp4ib8zo3i6m10/wikidata5m_text.txt.gz?dl=1
tar -xzvf wikidata5m_transductive.tar.gz
gzip -d wikidata5m_text.txt.gz

Convert the original Wikidata5M files into the numerical format used in pre-training:

python convert.py --text wikidata5m_text.txt \
		--train wikidata5m_transductive_train.txt \
		--valid wikidata5m_transductive_valid.txt \
		--converted_text Qdesc.txt \
		--converted_train train.txt \
		--converted_valid valid.txt

Encode the entity descriptions with the GPT-2 BPE:

mkdir -p gpt2_bpe
wget -O gpt2_bpe/encoder.json https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json
wget -O gpt2_bpe/vocab.bpe https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe
python -m examples.roberta.multiprocessing_bpe_encoder \
		--encoder-json gpt2_bpe/encoder.json \
		--vocab-bpe gpt2_bpe/vocab.bpe \
		--inputs Qdesc.txt \
		--outputs Qdesc.bpe \
		--keep-empty \
		--workers 60

Do negative sampling and dump the whole training and validation data:

python KGpreprocess.py --dumpPath KE1 \
		-ns 1 \
		--ent_desc Qdesc.bpe \
		--train train.txt \
		--valid valid.txt

The above command generates training and validation data for one epoch. You can generate data for more epochs by running it many times and dump to different folders (e.g. KE2, KE3, ...).

There may be too many instances in the KE training data generated above and thus results in the time for training one epoch is too long. We then randomly split the KE training data into smaller parts and the number of training instances in each part aligns with the MLM training data:

python splitDump.py --Path KE1 \
		--split_size 6834352 \
		--negative_sampling_size 1

The KE1 will be splited into KE1_0, KE1_1, KE1_2, KE1_3. We then binarize them for training:

wget -O gpt2_bpe/dict.txt https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt
for KE_Data in ./KE1_0/ ./KE1_1/ ./KE1_2/ ./KE1_3/ ; do \
    for SPLIT in head tail negHead negTail; do \
        fairseq-preprocess \ #if fairseq-preprocess cannot be founded, use "python -m fairseq_cli.preprocess" instead
            --only-source \
            --srcdict gpt2_bpe/dict.txt \
            --trainpref ${KE_Data}${SPLIT}/train.bpe \
            --validpref ${KE_Data}${SPLIT}/valid.bpe \
            --destdir ${KE_Data}${SPLIT} \
            --workers 60; \
    done \
done

Running

An example pre-training script:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
LR=6e-04                # Peak LR for polynomial LR scheduler.
NUM_CLASSES=2
MAX_SENTENCES=3        # Batch size.
NUM_NODES=16					 # Number of machines
ROBERTA_PATH="path/to/roberta.base/model.pt" #Path to the original roberta model
CHECKPOINT_PATH="path/to/checkpoints" #Directory to store the checkpoints
UPDATE_FREQ=`expr 784 / $NUM_NODES` # Increase the batch size

DATA_DIR=../Data

#Path to the preprocessed KE dataset, each item corresponds to a data directory for one epoch
KE_DATA=$DATA_DIR/KEI/KEI1_0:$DATA_DIR/KEI/KEI1_1:$DATA_DIR/KEI/KEI1_2:$DATA_DIR/KEI/KEI1_3:$DATA_DIR/KEI/KEI3_0:$DATA_DIR/KEI/KEI3_1:$DATA_DIR/KEI/KEI3_2:$DATA_DIR/KEI/KEI3_3:$DATA_DIR/KEI/KEI5_0:$DATA_DIR/KEI/KEI5_1:$DATA_DIR/KEI/KEI5_2:$DATA_DIR/KEI/KEI5_3:$DATA_DIR/KEI/KEI7_0:$DATA_DIR/KEI/KEI7_1:$DATA_DIR/KEI/KEI7_2:$DATA_DIR/KEI/KEI7_3:$DATA_DIR/KEI/KEI9_0:$DATA_DIR/KEI/KEI9_1:$DATA_DIR/KEI/KEI9_2:$DATA_DIR/KEI/KEI9_3:

DIST_SIZE=`expr $NUM_NODES \* 4`

fairseq-train $DATA_DIR/MLM \                #Path to the preprocessed MLM datasets
        --KEdata $KE_DATA \                      #Path to the preprocessed KE datasets
        --restore-file $ROBERTA_PATH \
        --save-dir $CHECKPOINT_PATH \
        --max-sentences $MAX_SENTENCES \
        --tokens-per-sample 512 \
        --task MLMetKE \                     
        --sample-break-mode complete \
        --required-batch-size-multiple 1 \
        --arch roberta_base \
        --criterion MLMetKE \
        --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
        --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \
        --clip-norm 0.0 \
        --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_UPDATES --warmup-updates $WARMUP_UPDATES \
        --update-freq $UPDATE_FREQ \
        --negative-sample-size 1 \ # Negative sampling size (one negative head and one negative tail)
        --ke-model TransE \ 
        --init-token 0 \
        --separator-token 2 \
        --gamma 4 \        # Margin of the KE objective
        --nrelation 822 \
        --skip-invalid-size-inputs-valid-test \
        --fp16 --fp16-init-scale 2 --threshold-loss-scale 1 --fp16-scale-window 128 \
        --reset-optimizer --distributed-world-size ${DIST_SIZE} --ddp-backend no_c10d --distributed-port 23456 \
        --log-format simple --log-interval 1 \
        #--relation-desc  #Add this option to encode the relation descriptions as relation embeddings (KEPLER-Rel in the paper)

Note: The above command assumes distributed training on 64x16GB V100 GPUs, 16 machines. If you have fewer GPUs or GPUs with less memory you may need to reduce $MAX_SENTENCES and increase $UPDATE_FREQ to compensate. Alternatively if you have more GPUs you can decrease $UPDATE_FREQ accordingly to increase training speed.

Note: If you are interested in the detailed implementations. The main implementations are in tasks/MLMetKE.py and criterions/MLMetKE.py. We encourage to master the fairseq toolkit before learning KEPLER implementation details.

Usage for NLP Tasks

We release the pre-trained checkpoint for NLP tasks. Since KEPLER does not modify RoBERTa model architectures, the KEPLER checkpoint can be directly used in the same way as RoBERTa checkpoints in the downstream NLP tasks.

Convert Checkpoint to HuggingFace's Transformers

In the fine-tuning and usage, it will be more convinent to convert the original fairseq checkpoints to HuggingFace's Transformers.

The conversion can be finished with this code. The example command is:

python -m transformers.convert_roberta_original_pytorch_checkpoint_to_pytorch \
			--roberta_checkpoint_path path_to_KEPLER_checkpoint \
			--pytorch_dump_folder_path path_to_output \

The path_to_KEPLER_checkpoint should contain model.pt (the downloaded KEPLER checkpoint) and dict.txt (standard RoBERTa dictionary file).

Note that the new versions of HuggingFace's Transformers library requires fairseq>=0.9.0, but the modified fairseq library in this repo and our checkpoints generated with is fairseq==0.8.0. The two versions are minorly different in the checkpoint format. Hence transformers<=2.2.2 or pytorch_transformers are needed for checkpoint conversion here.

TACRED

We suggest to use the converted HuggingFace's Transformers checkpoint as well as the OpenNRE library to perform experiments on TACRED. An example code will be updated soon.

To directly fine-tune KEPLER on TACRED in fairseq framework, please refer to this script. The script requires 2x16GB V100 GPUs.

FewRel

To finetune KEPLER on FewRel, you can use the offiicial code in the FewRel repo and set --encoder roberta as well as --pretrained_checkpoint path_to_converted_KEPLER.

OpenEntity

Please refer to this directory and this script for the codes of OpenEntity experiments.

These codes are modified on top of ERNIE.

GLUE

For the fine-tuning on GLUE tasks, refer to the official guide of RoBERTa.

Refer to this directory for the example scripts along with hyper-parameters.

Knowledge Probing (LAMA and LAMA-UHN)

For the experiments on LAMA, please refer to the codes in the LAMA repo and set --roberta_model_dir path_to_converted_KEPLER.

The LAMA-UHN dataset can be created with this scirpt.

Usage for Knowledge Embedding

We release the pre-trained checkpoint for KE tasks.

First, install the graphvite package in./graphvite following its instructions. GraphVite is an fast toolkit for network embedding and knowledge embedding, and we made some modifications on top of them.

Generate the entity embeddings and relation embeddings withgenerate_embeddings.py. The arguments are as following:

  • --data: the entity decription data, a single file, each line is an entity description. It should be BPE encoded and binarized like introduced in the Preprocessing for KE data
  • --ckpt_dir: path of the KEPLER checkpoint.
  • --ckpt: filename of the KEPLER checkpoint.
  • --dict: path to thedict.txt file.
  • --ent_emb: filename to dump entity embeddings (in numpy format).
  • --rel_emb: filename to dump relation embeddings (in numpy format).
  • --batch_size: batch size used in inference.

Then use evaluate_transe_transductive.py and ke_tool/evaluate_transe_inductive.py for KE evaluation. The arguments are as following:

  • --entity_embeddings: a numpy file storing the entity embeddings.
  • --relation_embeddings: a numpy file storing the relation embeddings.
  • --dim: the dimension of the relation and entity embeddings.
  • --entity2id: a json file that maps entity names (in the dataset) to the ids in the entity embedding numpy file, where the key is the entity names in the dataset, and the value is the id in the numpy file.
  • --relation2id: a json file that maps relation names (in the dataset) to the ids in the relation embedding numpy file.
  • --dataset: the test data file.
  • --train_dataset: the training data file (only for transductive setting).
  • --val_dataset: the validation data file (only for transductive setting).

Citation

If the codes help you, please cite our paper:

@article{wang2021KEPLER,
  title={KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation},
  author={Xiaozhi Wang and Tianyu Gao and Zhaocheng Zhu and Zhengyan Zhang and Zhiyuan Liu and Juanzi Li and Jian Tang},
  journal={Transactions of the Association for Computational Linguistics},
  year={2021},
  volume={9},
  doi = {10.1162/tacl_a_00360},
  pages={176-194}
}

These codes are developed on top of fairseq and GraphVite:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
@inproceedings{zhu2019graphvite,
    title={GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding},
     author={Zhu, Zhaocheng and Xu, Shizhen and Qu, Meng and Tang, Jian},
     booktitle={The World Wide Web Conference},
     pages={2494--2504},
     year={2019},
     organization={ACM}
 }
Owner
THU-KEG
THU-KEG
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022