Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

Overview

NLP Boot Camp (Jan) Synopsis

Full Name:

Prameya Mohanty

Name of your School:

Delhi Public School, Rourkela

Class:

VIII

Title of the Project:

iTransect – A Language Detector cum Translator

Project Domain:

Natural Language Processing

Summary:

This application is an AI and NLP enabled language detector cum translator. It can first detect the language used in the text entered by the user. Then it can also convert the text in your desired language. This app has a capability to recognize and translate text to over 15 languages.

Context:

We frequently face problems while reading google articles or while going through websites which are not in English language or our mother tongue. Many rural people also don't understand any language except their Mother Tongue. So, they can also translate the text and go through it.

My idea for this problem is that we can create a translator to translate the text into a language which we can understand. But another problem which occurs is that we need to first recognize that the original text is written in which language and mostly we fail to do so. For this reason, my application would just take the text as input, recognize the language of the text and then it would also translate the text into our desired language.

I transformed my idea into a solution by performing some Natural Language Processing on the text given by the user to first recognize the language used in the text and then translate into the desired language of the user.

How does it work:

I have used the MultinomialNB Model of the Scikit-Learn Library. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.

My application contains a Huge Dataset which contains over 15 languages and some texts on those languages. This dataset in trained on the MultinomialNB Model of the Scikit-Learn Library. This helps it to predict the language of the desired text which we provide to it. Then I have used the GoogleTrans API to Translate our Text into the desired language of the user.

My application takes some text as input from the user. Then it detects the language used in the text by a MultinomialNB Model of the Scikit-Learn Library. After that it uses the GoogleTrans API to translate the text into the desired language of the user.

The future scope of my model is that we can increase the dataset by adding more languages so that the predictions would be more accurate. This would also help our application to cover a broader audience.

Instructions for Usage:

  1. Prerequisite: To use this application, you should have Python installed in your system. Installation of Git is recommended but not compulsory.

  2. Clone Repo: If you have git installed in your system then you can use the command given here or else you can just click on the Code button and then click on the Download ZIP Button. git clone https://github.com/The-Coding-Hub/iTransect.git

  3. Install Requirements: Now you need to install the requirements of this application using pip and the requirements.txt file. Command to be executed in the console is given below. pip install -r ./requirements.txt

  4. Start App: Now you are all set the use this application. You just need to execute the command given below to start the development server of Python Flask in your Localhost.

  5. Enjoy App: Just open the link given in your console and then you can enjoy our application!

Video Link:

https://youtu.be/QsJQ1lxI2Lw

Code Folder Link:

https://github.com/The-Coding-Hub/iTransect

Owner
TheCodingHub
Student at Delhi Public School, Rourkela, Odisha. Programming is my favorite sport. YouTube Channel: TheCodingHub
TheCodingHub
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022