A Simple and Versatile Framework for Object Detection and Instance Recognition

Overview

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition

Major Features

  • FP16 training for memory saving and up to 2.5X acceleration
  • Highly scalable distributed training available out of box
  • Full coverage of state-of-the-art models including FasterRCNN, MaskRCNN, CascadeRCNN, RetinaNet, DCNv1/v2, TridentNet, NASFPN , EfficientNet, and Knowledge Distillation
  • Extensive feature set including large batch BN, loss synchronization, automatic BN fusion, soft NMS, multi-scale train/test
  • Modular design for coding-free exploration of new experiment settings
  • Extensive documentations including annotated config, Fintuning Guide

Recent Updates

  • Add RPN test (2019.05.28)
  • Add NASFPN (2019.06.04)
  • Add new ResNetV1b baselines from GluonCV (2019.06.07)
  • Add Cascade R-CNN with FPN backbone (2019.06.11)
  • Speed up FPN up to 70% (2019.06.16)
  • Update NASFPN to include larger models (2019.07.01)
  • Automatic BN fusion for fixed BN training, saving up to 50% GPU memory (2019.07.04)
  • Speed up MaskRCNN by 80% (2019.07.23)
  • Update MaskRCNN baselines (2019.07.25)
  • Add EfficientNet and DCN (2019.08.06)
  • Add python wheel for easy local installation (2019.08.20)
  • Add FitNet based Knowledge Distill (2019.08.27)
  • Add SE and train from scratch (2019.08.30)
  • Add a lot of docs (2019.09.03)
  • Add support for INT8 training(contributed by Xiaotao Chen & Jingqiu Zhou) (2019.10.24)
  • Add support for FCOS(contributed by Zhen Wei) (2019.11)
  • Add support for Mask Scoring RCNN(contributed by Zehui Chen) (2019.12)
  • Add support for RepPoints(contributed by Bo Ke) (2020.02)
  • Add support for FreeAnchor (2020.03)
  • Add support for Feature Pyramid Grids & PAFPN (2020.06)
  • Add support for CrowdHuman Dataset (2020.06)
  • Add support for Double Pred (2020.06)
  • Add support for SEPC(contributed by Qiaofei Li) (2020.07)

Setup

All-in-one Script

We provide a setup script for install simpledet and preppare the coco dataset. If you use this script, you can skip to the Quick Start.

Install

We provide a conda installation here for Debian/Ubuntu system. To use a pre-built docker or singularity images, please refer to INSTALL.md for more information.

# install dependency
sudo apt update && sudo apt install -y git wget make python3-dev libglib2.0-0 libsm6 libxext6 libxrender-dev unzip

# create conda env
conda create -n simpledet python=3.7
conda activate simpledet

# fetch CUDA environment
conda install cudatoolkit=10.1

# install python dependency
pip install 'matplotlib<3.1' opencv-python pytz

# download and intall pre-built wheel for CUDA 10.1
pip install https://1dv.aflat.top/mxnet_cu101-1.6.0b20191214-py2.py3-none-manylinux1_x86_64.whl

# install pycocotools
pip install 'git+https://github.com/RogerChern/cocoapi.git#subdirectory=PythonAPI'

# install mxnext, a wrapper around MXNet symbolic API
pip install 'git+https://github.com/RogerChern/mxnext#egg=mxnext'

# get simpledet
git clone https://github.com/tusimple/simpledet
cd simpledet
make

# test simpledet installation
mkdir -p experiments/faster_r50v1_fpn_1x
python detection_infer_speed.py --config config/faster_r50v1_fpn_1x.py --shape 800 1333

If the last line execute successfully, the average running speed of Faster R-CNN R-50 FPN will be reported. And you have successfuly setup SimpleDet. Now you can head up to the next section to prepare your dataset.

Preparing Data

We provide a step by step preparation for the COCO dataset below.

cd simpledet

# make data dir
mkdir -p data/coco/images data/src

# skip this if you have the zip files
wget -c http://images.cocodataset.org/zips/train2017.zip -O data/src/train2017.zip
wget -c http://images.cocodataset.org/zips/val2017.zip -O data/src/val2017.zip
wget -c http://images.cocodataset.org/zips/test2017.zip -O data/src/test2017.zip
wget -c http://images.cocodataset.org/annotations/annotations_trainval2017.zip -O data/src/annotations_trainval2017.zip
wget -c http://images.cocodataset.org/annotations/image_info_test2017.zip -O data/src/image_info_test2017.zip

unzip data/src/train2017.zip -d data/coco/images
unzip data/src/val2017.zip -d data/coco/images
unzip data/src/test2017.zip -d data/coco/images
unzip data/src/annotations_trainval2017.zip -d data/coco
unzip data/src/image_info_test2017.zip -d data/coco

python utils/create_coco_roidb.py --dataset coco --dataset-split train2017
python utils/create_coco_roidb.py --dataset coco --dataset-split val2017
python utils/create_coco_roidb.py --dataset coco --dataset-split test-dev2017

For other datasets or your own data, please check DATASET.md for more details.

Quick Start

# train
python detection_train.py --config config/faster_r50v1_fpn_1x.py

# test
python detection_test.py --config config/faster_r50v1_fpn_1x.py

Finetune

Please check FINTUNE.md

Model Zoo

Please refer to MODEL_ZOO.md for available models

Distributed Training

Please refer to DISTRIBUTED.md

Project Organization

Code Structure

detection_train.py
detection_test.py
config/
    detection_config.py
core/
    detection_input.py
    detection_metric.py
    detection_module.py
models/
    FPN/
    tridentnet/
    maskrcnn/
    cascade_rcnn/
    retinanet/
mxnext/
symbol/
    builder.py

Config

Everything is configurable from the config file, all the changes should be out of source.

Experiments

One experiment is a directory in experiments folder with the same name as the config file.

E.g. r50_fixbn_1x.py is the name of a config file

config/
    r50_fixbn_1x.py
experiments/
    r50_fixbn_1x/
        checkpoint.params
        log.txt
        coco_minival2014_result.json

Models

The models directory contains SOTA models implemented in SimpletDet.

How is Faster R-CNN built

Faster R-CNN

Simpledet supports many popular detection methods and here we take Faster R-CNN as a typical example to show how a detector is built.

  • Preprocessing. The preprocessing methods of the detector is implemented through DetectionAugmentation.
    • Image/bbox-related preprocessing, such as Norm2DImage and Resize2DImageBbox.
    • Anchor generator AnchorTarget2D, which generates anchors and corresponding anchor targets for training RPN.
  • Network Structure. The training and testing symbols of Faster-RCNN detector is defined in FasterRcnn. The key components are listed as follow:
    • Backbone. Backbone provides interfaces to build backbone networks, e.g. ResNet and ResNext.
    • Neck. Neck provides interfaces to build complementary feature extraction layers for backbone networks, e.g. FPNNeck builds Top-down pathway for Feature Pyramid Network.
    • RPN head. RpnHead aims to build classification and regression layers to generate proposal outputs for RPN. Meanwhile, it also provides interplace to generate sampled proposals for the subsequent R-CNN.
    • Roi Extractor. RoiExtractor extracts features for each roi (proposal) based on the R-CNN features generated by Backbone and Neck.
    • Bounding Box Head. BboxHead builds the R-CNN layers for proposal refinement.

How to build a custom detector

The flexibility of simpledet framework makes it easy to build different detectors. We take TridentNet as an example to demonstrate how to build a custom detector simply based on the Faster R-CNN framework.

  • Preprocessing. The additional processing methods could be provided accordingly by inheriting from DetectionAugmentation.
    • In TridentNet, a new TridentAnchorTarget2D is implemented to generate anchors for multiple branches and filter anchors for scale-aware training scheme.
  • Network Structure. The new network structure could be constructed easily for a custom detector by modifying some required components as needed and
    • For TridentNet, we build trident blocks in the Backbone according to the descriptions in the paper. We also provide a TridentRpnHead to generate filtered proposals in RPN to implement the scale-aware scheme. Other components are shared the same with original Faster-RCNN.

Contributors

Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Naiyan Wang, Xiaotao Chen, Jingqiu Zhou, Zhen Wei, Zehui Chen, Zhaoxiang Zhang, Bo Ke

License and Citation

This project is release under the Apache 2.0 license for non-commercial usage. For commercial usage, please contact us for another license.

If you find our project helpful, please consider cite our tech report.

@article{JMLR:v20:19-205,
  author  = {Yuntao Chen and Chenxia Han and Yanghao Li and Zehao Huang and Yi Jiang and Naiyan Wang and Zhaoxiang Zhang},
  title   = {SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition},
  journal = {Journal of Machine Learning Research},
  year    = {2019},
  volume  = {20},
  number  = {156},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v20/19-205.html}
}
Owner
TuSimple
The Future of Trucking
TuSimple
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022