Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Overview

Pano3D

A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation

made-with-python Maintaner Maintaner

Streamlit Demo YouTube Video Views

Pano3D Intro

Pano3D is a new benchmark for depth estimation from spherical panoramas. We generate a dataset (using GibsonV2) and provide baselines for holistic performance assessment, offering:

  1. Primary and secondary traits metrics:
    • Direct depth performance:
      • (w)RMSE
      • (w)RMSLE
      • AbsRel
      • SqRel
      • (w)Relative accuracy (\delta) @ {1.05, 1.1, 1.25, 1.252, 1.253 }
    • Boundary discontinuity preservation:
      • Precision @ {0.25, 0.5, 1.0}m
      • Recall @ {0.25, 0.5, 1.0}m
      • Depth boundary errors of accuracy and completeness
    • Surface smoothness:
      • RMSEo
      • Relative accuracy (\alpha) @ {11.25o, 22.5o, 30o}
  2. Out-of-distribution & Zero-shot cross dataset transfer:
    • Different depth distribution test set
    • Varying scene context test set
    • Shifted camera domain test set

By disentangling generalization and assessing all depth properties, Pano3D aspires to drive progress benchmarking for 360o depth estimation.

Using Pano3D to search for a solid baseline results in an acknowledgement of exploiting complementary error terms, adding encoder-decoder skip connections and using photometric augmentations.

TODO

  • Web Demo
  • Data Download
  • Loader & Splits
  • Models Weights Download
  • Model Serve Code
  • Model Hub Code
  • Metrics Code

Demo

A publicly hosted demo of the baseline models can be found here. Using the web app, it is possible to upload a panorama and download a 3D reconstructed mesh of the scene using the derived depth map.

Note that due to the external host's caching issues, it might be necessary to refresh your browser's cache in between runs to update the 3D models.

Data

Download

To download the data, follow the instructions at vcl3d.github.io/Pano3D/download/.

Please note that getting access to the data download links is a two step process as the dataset is a derivative and compliance with the original dataset's terms and usage agreements is required. Therefore:

  1. You first need to fill in this Google Form.
  2. And, then, you need to perform an access request at each one of the Zenodo repositories (depending on which dataset partition you need):

After both these steps are completed, you will soon receive the download links for each dataset partition.

Loader

Splits

Models

Download

Inference

Serve

Metrics

Direct

Boundary

Smoothness

Results

Owner
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
Computer Vision Lab in CERTH-ITI
Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022