A machine learning project that predicts the price of used cars in the UK

Overview

Car Price Prediction

Car Image

Image Credit: AA Cars

Project Overview

  • Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup.
  • Cleaned the data and built a model to help determine the price of cars on auction
  • Built a flask web app and deploy to cloud

Packages/Tools Used

  • Python Version: 3.9
  • BeautifulSoup
  • Request
  • Numpy
  • Matplotlib
  • Seaborn
  • Scikit-Learn

Data

The data was scraped from AA Cars. The data was scraped from multiple pages from the site and was stored as a csv file. The scraped data contains:

  • Name
  • Price
  • Year
  • Mileage
  • Engine
  • Transmisson

Data Cleaning

The features (columns) contained messy entries and were tidied using some custom functions. The following steps were taken.

  • Removed the duplicate rows in the data because it will affect the analysis.
  • Deleted thhe rows with missing values because they ae not up to 1% of the data.
  • Extracted the manufaturer of each car from the name column
  • Corrected some of the values in the manufacturers column by merging similar value and correcting those wrongly extracted.
  • Removed the pounds symbol and the comma in the values of the price column
  • Created an age column by substacting the values in the year column fom the current year, 2021. This is an easier column to work with.
  • Removed the commas, space and miles input in all the values of the mileage columns.
    • Corrected some of the values in the engine and transmission columns by merging similar value and correcting those wrongly extracted.

Exploratory Data Analysis

  • The count of the number of cars owned by each car manufacturer Car manufacturer distribution

  • The count of the number of cars from the different years Year distribution

  • The count of the number of cars with the diffrent car engine types Car engine distribution

  • The count of the number of cars with different car transmission types Car transmission distribution

  • The word cloud of all car manufacturers.

Car manufacturer wordcloud

Model Building

  • The 'name' and 'year' column were dropped because they are irrelevant.
  • The categorical features (name, colour and transmission) were transformed into numerical data and I scaled all the feature values to make all of them be in the same range
  • Linear Regression, Ridge Regression, Random Forest Regressor, Ada Boost Regressor and Support Vector Regressor models were all built.
  • Root mean squared error (RMSE) which is the square root of the sum of the difference between the true value and the predicted value was the metric used to evaluate the performance of the model.
  • The CatBoost Regressor model has the best performance and it was hypertuned using GridSearchCV to improve the performance.
  • The model was tested on new data and it gave a good output.

A flask web app is currently under construction

NB: I am open to constructive criticisms about this project

Owner
Victor Umunna
Victor Umunna
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
李航《统计学习方法》复现

本项目复现李航《统计学习方法》每一章节的算法 特点: 笔记摘要:在每个文件开头都会有一些核心的摘要 pythonic:这里会用尽可能规范的方式来实现,包括编程风格几乎严格按照PEP8 循序渐进:前期的算法会更list的方式来做计算,可读性比较强,后期几乎完全为numpy.array的计算,并且辅助详

58 Oct 22, 2021
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023