BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Overview

Table of contents

  1. Introduction
  2. Using BARTpho with fairseq
  3. Using BARTpho with transformers
  4. Notes

BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Two BARTpho versions BARTpho-syllable and BARTpho-word are the first public large-scale monolingual sequence-to-sequence models pre-trained for Vietnamese. BARTpho uses the "large" architecture and pre-training scheme of the sequence-to-sequence denoising model BART, thus especially suitable for generative NLP tasks. Experiments on a downstream task of Vietnamese text summarization show that in both automatic and human evaluations, BARTpho outperforms the strong baseline mBART and improves the state-of-the-art.

The general architecture and experimental results of BARTpho can be found in our paper:

@article{bartpho,
title     = {{BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese}},
author    = {Nguyen Luong Tran and Duong Minh Le and Dat Quoc Nguyen},
journal   = {arXiv preprint},
volume    = {arXiv:2109.09701},
year      = {2021}
}

Please CITE our paper when BARTpho is used to help produce published results or incorporated into other software.

Using BARTpho in fairseq

Installation

There is an issue w.r.t. the encode function in the BART hub_interface, as discussed in this pull request https://github.com/pytorch/fairseq/pull/3905. While waiting for this pull request's approval, please install fairseq as follows:

git clone https://github.com/datquocnguyen/fairseq.git
cd fairseq
pip install --editable ./

Pre-trained models

Model #params Download Input text
BARTpho-syllable 396M fairseq-bartpho-syllable.zip Syllable level
BARTpho-word 420M fairseq-bartpho-word.zip Word level
  • unzip fairseq-bartpho-syllable.zip
  • unzip fairseq-bartpho-word.zip

Example usage

from fairseq.models.bart import BARTModel  

#Load BARTpho-syllable model:  
model_folder_path = '/PATH-TO-FOLDER/fairseq-bartpho-syllable/'  
spm_model_path = '/PATH-TO-FOLDER/fairseq-bartpho-syllable/sentence.bpe.model'  
bartpho_syllable = BARTModel.from_pretrained(model_folder_path, checkpoint_file='model.pt', bpe='sentencepiece', sentencepiece_model=spm_model_path).eval()
#Input syllable-level/raw text:  
sentence = 'Chúng tôi là những nghiên cứu viên.'  
#Apply SentencePiece to the input text
tokenIDs = bartpho_syllable.encode(sentence, add_if_not_exist=False)
#Extract features from BARTpho-syllable
last_layer_features = bartpho_syllable.extract_features(tokenIDs)

##Load BARTpho-word model:  
model_folder_path = '/PATH-TO-FOLDER/fairseq-bartpho-word/'  
bpe_codes_path = '/PATH-TO-FOLDER/fairseq-bartpho-word/bpe.codes'  
bartpho_word = BARTModel.from_pretrained(model_folder_path, checkpoint_file='model.pt', bpe='fastbpe', bpe_codes=bpe_codes_path).eval()
#Input word-level text:  
sentence = 'Chúng_tôi là những nghiên_cứu_viên .'  
#Apply BPE to the input text
tokenIDs = bartpho_word.encode(sentence, add_if_not_exist=False)
#Extract features from BARTpho-word
last_layer_features = bartpho_word.extract_features(tokenIDs)

Using BARTpho in transformers

Installation

  • Installation with pip (v4.12+): pip install transformers
  • Installing from source:
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .

Pre-trained models

Model #params Input text
vinai/bartpho-syllable 396M Syllable level
vinai/bartpho-word 420M Word level

Example usage

import torch
from transformers import AutoModel, AutoTokenizer

#BARTpho-syllable
syllable_tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable", use_fast=False)
bartpho_syllable = AutoModel.from_pretrained("vinai/bartpho-syllable")
TXT = 'Chúng tôi là những nghiên cứu viên.'  
input_ids = syllable_tokenizer(TXT, return_tensors='pt')['input_ids']
features = bartpho_syllable(input_ids)

from transformers import MBartForConditionalGeneration
bartpho_syllable = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
TXT = 'Chúng tôi là <mask> nghiên cứu viên.'
input_ids = syllable_tokenizer(TXT, return_tensors='pt')['input_ids']
logits = bartpho_syllable(input_ids).logits
masked_index = (input_ids[0] == syllable_tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
print(syllable_tokenizer.decode(predictions).split())

#BARTpho-word
word_tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-word", use_fast=False)
bartpho_word = AutoModel.from_pretrained("vinai/bartpho-word")
TXT = 'Chúng_tôi là những nghiên_cứu_viên .'  
input_ids = word_tokenizer(TXT, return_tensors='pt')['input_ids']
features = bartpho_word(input_ids)

bartpho_word = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-word")
TXT = 'Chúng_tôi là những <mask> .'
input_ids = word_tokenizer(TXT, return_tensors='pt')['input_ids']
logits = bartpho_word(input_ids).logits
masked_index = (input_ids[0] == word_tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
print(word_tokenizer.decode(predictions).split())
  • Following mBART, BARTpho uses the "large" architecture of BART with an additional layer-normalization layer on top of both the encoder and decoder. Thus, when converted to be used with transformers, BARTpho can be called via mBART-based classes.

Notes

  • Before fine-tuning BARTpho on a downstream task, users should perform Vietnamese tone normalization on the downstream task's data as this pre-process was also applied to the pre-training corpus. A Python script for Vietnamese tone normalization is available at HERE.
  • For BARTpho-word, users should use VnCoreNLP to segment input raw texts as it was used to perform both Vietnamese tone normalization and word segmentation on the pre-training corpus.

License

MIT License

Copyright (c) 2021 VinAI Research

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
VinAI Research
VinAI Research
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022