Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

Overview

PyTASER

PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of this library is to provide qualitative comparisons for experimental TAS spectra - a complex and tedious process, especially for pristine materials. The main features include:

  • An interactive TAS spectrum for a pristine semiconducting material
  • Isolating spectra for individual band transitions from the overall TAS spectrum for the material.
  • Spectra in different conditions: temperature, carrier concentrations (analogous to pump-probe time delay)
  • Identifying partial occupancies of valence and conduction bands, using the Fermi-Dirac distribution for different Quasi-Fermi levels.
  • Considers both non-magnetic and magnetic materials.
  • Taking DFT-calculated bandstructure and dos inputs, with primary support for the Materials Project.

Installation

The recommended way to install PyTASER is in a conda environment.

Installation method to be updated here

PyTASER is currently compatible with Python 3.9+ and relies on a number of open-source python packages, specifically:

Visualisation

Once the library is installed, please setup a file as done in the examples provided. Then just run it as a python file:

python3 filename.py

Contributing

The library is currently undergoing some final changes before it is finalised. However, once it is completed, we would greatly appreciate any contributions in the form of a pull request. Additionally, any test cases/example spectra performed with PyTASER would be welcomed.

Future topics we'd like to build on:

  • Converting between carrier concentrations and pump-probe time delay (for a more quantitative analysis)
  • Incorporating spin-change processes (e.g. moving from Spin.up to Spin.down and vice-versa) for spin-polarised systems
  • Incorporating finite-temperature effects (particularly with indirect bandgaps and phonons, and defects)
  • Incorporating more complex optical processes (e.g. Stimulated Emissions)
  • Cleaning the regions further away from the bandgap
  • Implementing the optical transition probabilities alongside the JDOS
  • Creating a kinetics plot for TAS analysis.
  • Relating spectral features with associated optical processes

Acknowledgements

Developed by Savyasanchi Aggarwal, Alex Ganose and Liam Harnett-Caulfield. Aron Walsh designed and led the project.

Thanks to the WMD group @ Imperial/Yonsei for all the interesting discussions and improvements!

Owner
Materials Design Group
Research group in computational chemistry & physics led by @aronwalsh
Materials Design Group
Machine Learning Techniques using python.

๐Ÿ‘‹ Hi, Iโ€™m Fahad from TEXAS TECH. ๐Ÿ‘€ Iโ€™m interested in Optimization / Machine Learning/ Statistics ๐ŸŒฑ Iโ€™m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
๏ปฟGreykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) ๋จธ์‹ ๋Ÿฌ๋‹ ์•ผํ•™ ์ž‘์‹ฌ 10์ผ๊ณผ ์ฅฌํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์‹œ์ž‘ ๋“ค์–ด๊ฐ€๊ธฐ์ „ https://nbviewer.org/ ํŽ˜์ด์ง€๋ฅผ ํ†ตํ•ด์„œ ์ฅฌํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๋‚ด์šฉ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์œ„ ํŽ˜์ด์ง€์—์„œ ํ˜„์žฌ ๋ ˆํฌ ๊ธฐ

HyeonWoo Jeong 1 Jan 23, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022