Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

Overview

PyTASER

PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of this library is to provide qualitative comparisons for experimental TAS spectra - a complex and tedious process, especially for pristine materials. The main features include:

  • An interactive TAS spectrum for a pristine semiconducting material
  • Isolating spectra for individual band transitions from the overall TAS spectrum for the material.
  • Spectra in different conditions: temperature, carrier concentrations (analogous to pump-probe time delay)
  • Identifying partial occupancies of valence and conduction bands, using the Fermi-Dirac distribution for different Quasi-Fermi levels.
  • Considers both non-magnetic and magnetic materials.
  • Taking DFT-calculated bandstructure and dos inputs, with primary support for the Materials Project.

Installation

The recommended way to install PyTASER is in a conda environment.

Installation method to be updated here

PyTASER is currently compatible with Python 3.9+ and relies on a number of open-source python packages, specifically:

Visualisation

Once the library is installed, please setup a file as done in the examples provided. Then just run it as a python file:

python3 filename.py

Contributing

The library is currently undergoing some final changes before it is finalised. However, once it is completed, we would greatly appreciate any contributions in the form of a pull request. Additionally, any test cases/example spectra performed with PyTASER would be welcomed.

Future topics we'd like to build on:

  • Converting between carrier concentrations and pump-probe time delay (for a more quantitative analysis)
  • Incorporating spin-change processes (e.g. moving from Spin.up to Spin.down and vice-versa) for spin-polarised systems
  • Incorporating finite-temperature effects (particularly with indirect bandgaps and phonons, and defects)
  • Incorporating more complex optical processes (e.g. Stimulated Emissions)
  • Cleaning the regions further away from the bandgap
  • Implementing the optical transition probabilities alongside the JDOS
  • Creating a kinetics plot for TAS analysis.
  • Relating spectral features with associated optical processes

Acknowledgements

Developed by Savyasanchi Aggarwal, Alex Ganose and Liam Harnett-Caulfield. Aron Walsh designed and led the project.

Thanks to the WMD group @ Imperial/Yonsei for all the interesting discussions and improvements!

Owner
Materials Design Group
Research group in computational chemistry & physics led by @aronwalsh
Materials Design Group
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
Machine-care - A simple python script to take care of simple maintenance tasks

Machine care An simple python script to take care of simple maintenance tasks fo

2 Jul 10, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022