[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

Overview

DomainMix

[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

[paper] [demo] [Chinese blog]

DomainMix works fine on both PaddlePaddle and PyTorch.

Framework:

Requirement

  • Python 3.7
  • Pytorch 1.7.0
  • sklearn 0.23.2
  • PIL 5.4.1
  • Numpy 1.19.4
  • Torchvision 0.8.1

Reproduction Environment

  • Test our models: 1 Tesla V100 GPU.
  • Train new models: 4 Telsa V100 GPUs.
  • Note that the required for GPU is not very strict, and 6G memory per GPU is minimum.

Preparation

  1. Dataset

We evaluate our algorithm on RandPerson, Market-1501, CUHK03-NP and MSMT17. You should download them by yourselves and prepare the directory structure like this:

*DATA_PATH
      *data
         *randperson_subset
             *randperson_subset
                 ...
         *market1501
             *Market-1501-v15.09.15
                 *bounding_box_test
                 ...
         *cuhk03_np
             *detected
             *labeled
         *msmt17
             *MSMT17_V1
                 *test
                 *train
                 ...
  1. Pretrained Models

We use ResNet-50 and IBN-ResNet-50 as backbones. The pretrained models for ResNet-50 will be downloaded automatically. When training with the backbone of IBN-ResNet-50, you should download the pretrained models from here, and save it like this:

*DATA_PATH
      *logs
         *pretrained
             resnet50_ibn_a.pth.tar
  1. Our Trained Models

We provide our trained models as follows. They should be saved in ./logs/trained

Market1501:

DomainMix(43.5% mAP) DomainMix-IBN(45.7% mAP)

CUHK03-NP:

DomainMix(16.7% mAP) DomainMix-IBN(18.3% mAP)

MSMT17:

DomainMix(9.3% mAP) DomainMix-IBN(12.1% mAP)

Train

We use RandPerson+MSMT->Market as an example, other DG tasks will follow similar pipelines.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py \
-dsy randperson_subset -dre msmt17 -dun market1501 \
-a resnet50 --margin 0.0 --num-instances 4 -b 64 -j 4 --warmup-step 5 \
--lr 0.00035 --milestones 10 15 30 40 50 --iters 2000 \
--epochs 60 --eval-step 1 --logs-dir logs/randperson_subsetmsTOm/domainmix

Test

We use RandPerson+MSMT->Market as an example, other DG tasks will follow similar pipelines.

CUDA_VISIBLE_DEVICES=0 python test.py -b 256 -j 8 --dataset-target market1501 -a resnet50 \
--resume logs/trained/model_best_435.pth.tar

Acknowledgement

Some parts of our code are from MMT and SpCL. Thanks Yixiao Ge for her contribution.

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{
  wang2021domainmix,
  title={DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations},
  author={Wenhao Wang and Shengcai Liao and Fang Zhao and Kangkang Cui and Ling Shao},
  booktitle={British Machine Vision Conference},
  year={2021}
}
Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023