Official PyTorch implementation of GDWCT (CVPR 2019, oral)

Overview


This repository provides the official code of GDWCT, and it is written in PyTorch.

Paper

Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation (link)
Wonwoong Cho1), Sungha Choi1,2), David Keetae Park1), Inkyu Shin3), Jaegul Choo1)
1)Korea University, 2)LG Electronics, 3)Hanyang University
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 (Oral)

Additional resources for comprehending the paper

Comparison with baselines on CelebA dataset


Comparison with baselines on Artworks dataset


Prerequisites

  • Python 3.6
  • PyTorch 0.4.0+
  • Linux and NVIDIA GPU + CUDA CuDNN

Instructions

Installation

git clone https://github.com/WonwoongCho/GDWCT.git
cd GDWCT

Dataset

  1. Artworks dataset Please go to the github repository of CycleGAN (link) and download monet2photo, cezanne2photo, ukiyoe2photo, and vangogh2photo.

  2. CelebA dataset Our data loader necessitates data whose subdirectories are composed of 'trainA', 'trainB', 'testA', and 'testB'. Hence, after downloading CelebA dataset, you need to preprocess CelebA data by separating the data according to a target attribute of a translation. i.e., A: Male, B: Female.
    CelebA dataset can be easily downloaded with the following script.

bash download.sh celeba
  1. BAM dataset Similar to CelebA, you need to preprocess the data after downloading. Downloading the data is possible if you fulfill a given task (segmentation labeling). Please go to the link in order to download it.

We wish to directly provide the data we used in the paper, however it cannot be allowed because the data is preprocessed. We apologize for this.

Train and Test

Settings and hyperparameters are set in the config.yaml file. Please refer to specific descriptions provided in the file as comments. After setting, GDWCT can be trained or tested by the following script (NOTE: the values of 'MODE', 'LOAD_MODEL', and 'START' should be changed if a user want to test the model.):

python run.py

Pretrained models

Run the script if you need to download pretrained models (Smile <=> Non-Smile), (Bangs <=> Non-Bangs). The pretrained models will be downloaded and unzipped into ./pretrained_models/ directory.

bash download.sh pretrained

In order to test the pretrained models, please change several options in the config file, as described in the script below.
If the name of a pretrained model is G_A_CelebA_Bangs_G4_320000.pth,

N_GROUP: 4
SAVE_NAME: CelebA_Bangs_G4
MODEL_SAVE_PATH: pretrained_models/
START: 320000
LOAD_MODEL: True
MODE: test

Results

Citation

Please cite our paper if our work including this code is helpful for your research.

@InProceedings{GDWCT2019,
author = {Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, Jaegul Choo},
title = {Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
Owner
WonwoongCho
CV can be found at my homepage.
WonwoongCho
113 Nov 28, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Neural Surface Maps

Neural Surface Maps Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra [Paper] [Project Page]

Luca Morreale 49 Dec 13, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022