Official PyTorch implementation of GDWCT (CVPR 2019, oral)

Overview


This repository provides the official code of GDWCT, and it is written in PyTorch.

Paper

Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation (link)
Wonwoong Cho1), Sungha Choi1,2), David Keetae Park1), Inkyu Shin3), Jaegul Choo1)
1)Korea University, 2)LG Electronics, 3)Hanyang University
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 (Oral)

Additional resources for comprehending the paper

Comparison with baselines on CelebA dataset


Comparison with baselines on Artworks dataset


Prerequisites

  • Python 3.6
  • PyTorch 0.4.0+
  • Linux and NVIDIA GPU + CUDA CuDNN

Instructions

Installation

git clone https://github.com/WonwoongCho/GDWCT.git
cd GDWCT

Dataset

  1. Artworks dataset Please go to the github repository of CycleGAN (link) and download monet2photo, cezanne2photo, ukiyoe2photo, and vangogh2photo.

  2. CelebA dataset Our data loader necessitates data whose subdirectories are composed of 'trainA', 'trainB', 'testA', and 'testB'. Hence, after downloading CelebA dataset, you need to preprocess CelebA data by separating the data according to a target attribute of a translation. i.e., A: Male, B: Female.
    CelebA dataset can be easily downloaded with the following script.

bash download.sh celeba
  1. BAM dataset Similar to CelebA, you need to preprocess the data after downloading. Downloading the data is possible if you fulfill a given task (segmentation labeling). Please go to the link in order to download it.

We wish to directly provide the data we used in the paper, however it cannot be allowed because the data is preprocessed. We apologize for this.

Train and Test

Settings and hyperparameters are set in the config.yaml file. Please refer to specific descriptions provided in the file as comments. After setting, GDWCT can be trained or tested by the following script (NOTE: the values of 'MODE', 'LOAD_MODEL', and 'START' should be changed if a user want to test the model.):

python run.py

Pretrained models

Run the script if you need to download pretrained models (Smile <=> Non-Smile), (Bangs <=> Non-Bangs). The pretrained models will be downloaded and unzipped into ./pretrained_models/ directory.

bash download.sh pretrained

In order to test the pretrained models, please change several options in the config file, as described in the script below.
If the name of a pretrained model is G_A_CelebA_Bangs_G4_320000.pth,

N_GROUP: 4
SAVE_NAME: CelebA_Bangs_G4
MODEL_SAVE_PATH: pretrained_models/
START: 320000
LOAD_MODEL: True
MODE: test

Results

Citation

Please cite our paper if our work including this code is helpful for your research.

@InProceedings{GDWCT2019,
author = {Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, Jaegul Choo},
title = {Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
Owner
WonwoongCho
CV can be found at my homepage.
WonwoongCho
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022