A modern pure-Python library for reading PDF files

Related tags

Deep Learningpdf
Overview

PyPI version Code Actions Status Code style: black

pdf

A modern pure-Python library for reading PDF files.

The goal is to have a modern interface to handle PDF files which is consistent with itself and typical Python syntax.

The library should be Python-only (hence no C-extensions), but allow to change the backend. Similar in concept to matplotlib backends and Keras backends.

The default backend could be PyPDF2.

Possible other backends could be PyMuPDF (using MuPDF) and PikePDF (using QPDF).

WARNING: This library is UNSTABLE at the moment! Expect many changes!

Installation

pip install pdffile

Usage

Retrieve Metadata

>>> import pdf

>>> doc = pdf.PdfFile("001-trivial/minimal-document.pdf")
>>> len(doc)
1

>>> doc.metadata
Metadata(
    title=None,
    producer='pdfTeX-1.40.23',
    creator='TeX',
    creation_date=datetime.datetime(2022, 4, 3, 18, 5, 42),
    modification_date=datetime.datetime(2022, 4, 3, 18, 5, 42)
    other={
         '/CreationDate': "D:20220403180542+02'00'",
         '/ModDate': "D:20220403180542+02'00'",
         '/Trapped': '/False',
         '/PTEX.Fullbanner': 'This is pdfTeX, V...'})

Encrypted PDFs

If you have an encrypted PDF, just provide the key:

doc = pdf.PdfFile(pdf_path, password=password)

All following operations work just as described.

Get Outline

>>> import pdf
>>> doc = pdf.PdfFile(pdf_path, password=password)
>>> doc.outline
[
    Links(page=5, text='1 Header'),
    Links(page=5, text='1.1 A section'),
    Links(page=9, text='2 Foobar'),
    Links(page=108, text='References')
]

Extract Text

>>> import pdf
>>> doc = pdf.PdfFile("001-trivial/minimal-document.pdf")
>>> doc[0]
<pdf.PdfPage object at 0x7f72d2b04100>
>>> doc[0].text
'Loremipsumdolorsitamet,consetetursadipscingelitr,seddiamnonumyeirmod\ntemporinviduntutlaboreetdoloremagnaaliquyamerat,seddiamvoluptua.Atvero\neosetaccusametjustoduodoloresetearebum.Stetclitakasdgubergren,noseataki-\nmatasanctusestLoremipsumdolorsitamet.Loremipsumdolorsitamet,consetetur\nsadipscingelitr,seddiamnonumyeirmodtemporinviduntutlaboreetdoloremagna\naliquyamerat,seddiamvoluptua.Atveroeosetaccusametjustoduodoloresetea\nrebum.Stetclitakasdgubergren,noseatakimatasanctusestLoremipsumdolorsit\namet.\n1\n'

Alternatively, you can use doc.text to get the text of all pages.

Owner
The py-pdf organization maintains Python packages that deal with the PDF file format
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022