XGBoost + Optuna

Overview

AutoXGB

XGBoost + Optuna: no brainer

  • auto train xgboost directly from CSV files
  • auto tune xgboost using optuna
  • auto serve best xgboot model using fastapi

NOTE: PRs are currently not accepted. If there are issues/problems, please create an issue.

Installation

Install using pip

pip install autoxgb

Usage

Training a model using AutoXGB is a piece of cake. All you need is some tabular data.

Parameters

###############################################################################
### required parameters
###############################################################################

# path to training data
train_filename = "data_samples/binary_classification.csv"

# path to output folder to store artifacts
output = "output"

###############################################################################
### optional parameters
###############################################################################

# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None

# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None

# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None

# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]

# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None

# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None

# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True

# number of folds to use for cross-validation
# default is 5
num_folds = 5

# random seed for reproducibility
# default is 42
seed = 42

# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100

# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360

# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False

Python API

To train a new model, you can run:

from autoxgb import AutoXGB


# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"

# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False

# Now its time to train the model!
axgb = AutoXGB(
    train_filename=train_filename,
    output=output,
    test_filename=test_filename,
    task=task,
    idx=idx,
    targets=targets,
    features=features,
    categorical_features=categorical_features,
    use_gpu=use_gpu,
    num_folds=num_folds,
    seed=seed,
    num_trials=num_trials,
    time_limit=time_limit,
    fast=fast,
)
axgb.train()

CLI

Train the model using the autoxgb train command. The parameters are same as above.

autoxgb train \
 --train_filename datasets/30train.csv \
 --output outputs/30days \
 --test_filename datasets/30test.csv \
 --use_gpu

You can also serve the trained model using the autoxgb serve command.

autoxgb serve --model_path outputs/mll --host 0.0.0.0 --debug

To know more about a command, run:

`autoxgb <command> --help` 
autoxgb train --help


usage: autoxgb <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
                                        [--seed SEED] [--time_limit TIME_LIMIT]

optional arguments:
  -h, --help            show this help message and exit
  --train_filename TRAIN_FILENAME
                        Path to training file
  --test_filename TEST_FILENAME
                        Path to test file
  --output OUTPUT       Path to output directory
  --task {classification,regression}
                        User defined task type
  --idx IDX             ID column
  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'
  --num_folds NUM_FOLDS
                        Number of folds to use
  --features FEATURES   Features to use, separated by ';'
  --use_gpu             Whether to use GPU for training
  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
  --seed SEED           Random seed
  --time_limit TIME_LIMIT
                        Time limit for optimization
Owner
abhishek thakur
Kaggle: www.kaggle.com/abhishek
abhishek thakur
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023