A pipeline that creates consensus sequences from a Nanopore reads. I

Overview
Authors: 
Ada Madejska, MCDB, UCSB  (contact: [email protected])
Nick Noll, UCSB

This pipeline takes error-prone Nanopore reads and tries to increase the percentage identity
of the results of identifying species with BLAST. The reads in fastq format are put through the pipeline
which includes the following steps.
1. Quality control 
    - very short and very long reads (reads that highly deviate from the usual length of the 16S sequence)
    are dropped.
2. Kmer frequency matrix
    - make a kmer frequency matrix based on the reads from the quality control step. The value of k
    can be changed (k=5 or 6 is recommended)
3. UMAP projection and HDBSCAN clustering
    - the kmer frequency matrix is used to create a UMAP projection. The default parameters for UMAP
    and HDBSCAN functions have been chosen based on mock dataset but can be changed. 
4. Refinement 
    - based on our tests on mock datasets, sometimes reads from different species can cluster together.
    To prevent that, we include a refinement step based on MSA of Clustal Omega on each cluster.
    The alignment outputs a guide tree which is used for dividing the cluster into smaller subclusters.
    The distance threshold can be changed to suit each dataset.
5. Consensus making
    - lastly, based on the defined clusters, the last step creates a consensus sequence based on 
    majority calling. The direction of the reads is fixed using minimap2, the alignment is performed 
    by MAFFT, and the consensus is created using em_cons. The reads are run through BLASTN to check
    for identity of each cluster. 

Software Dependencies:

To successfully run the pipeline, certain software need to be installed.
1. Minimap2 - for the consensus making step (https://github.com/lh3/minimap2)
2. MAFFT - for alignment in the consensus making step (https://mafft.cbrc.jp/alignment/software/)
3. EM_CONS - for creating the consensus (http://emboss.sourceforge.net/apps/cvs/emboss/apps/cons.html)
4. NCBIN - for identification of the consensus sequences in the database 
    (https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/) (a 16S database is also required)
5. CLUSTALO - for the refinement step (http://www.clustal.org/omega/)

Specifications:

This pipeline runs in python3.8.10 and julia v"1.4.1". 

The following Python libraries are also required:
BioPython
hdbscan
matplotlib
pandas
sklearn
umap

Following Julia packages are required:
Pkg
DataFrames
CSV
Owner
Ada Madejska
UCSB Graduate Student in Computational Biology
Ada Madejska
PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j.

PostQF Copyright © 2022 Ralph Seichter PostQF is a user-friendly Postfix queue data filter which operates on data produced by postqueue -j. See the ma

Ralph Seichter 11 Nov 24, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Python script for transferring data between three drives in two separate stages

Waterlock Waterlock is a Python script meant for incrementally transferring data between three folder locations in two separate stages. It performs ha

David Swanlund 13 Nov 10, 2021
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
ASOUL直播间弹幕抓取&&数据分析

ASOUL直播间弹幕抓取&&数据分析(更新中) 这些文件用于爬取ASOUL直播间的弹幕(其他直播间也可以)和其他信息,以及简单的数据分析生成。

159 Dec 10, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022