Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

Overview

README

Code for the paper Asymptotics of L2 Regularized Network Embeddings.

Requirements

Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0.24.1, tqdm, along with any other packages required for the above three packages.

Code

To run node classification or link prediction experiments, run

python -m code.train_embed [[args]]

or

python -m code.train_embed_link [[args]]

from the command line respectively, where [[args]] correspond to the command line arguments for each function. Note that the scripts expect to run from the parent directory of the code folder; you will need to change the import statements in the associated python files if you move them around. The -h command line argument will display the arguments (with descriptions) of each of the two files.

train_embed.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--train-split [0.01, 0.025, 0.05] Percentage(s) to use for the training split when using the learned embeddings for downstream classification tasks.
--train-split-num 25 Decides the number of random training/test splits to use for evaluating performance. Defaults to 50.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--dgi-sampler fullbatch Specifies either a fullbatch or a minibatch sampling scheme for DGI.
--gcn-activation ['relu'] Determines the activations of each layer within a GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [10, 5].
--tensorboard If toggles, saves Tensorboard logs for debugging purposes.
--visualize-embeds None If specified with a directory, saves an image of a TSNE 2D projection of the learned embeddings at the specified directory.
--save-spectrum None If specifies, saves the spectrum of the learned embeddings output by the algorithm.

train_embed_link.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--test-split 0.1 Split of edge/non-edge set to be used for testing.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--gcn-activation ['relu'] Specifies layers in terms of their output activation (either relu or linear), with the number of arguments determining the length of the GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [25, 10].
Owner
Andrew Davison
Andrew Davison
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022