Repository for DNN training, theory to practice, part of the Large Scale Machine Learning class at Mines Paritech

Overview

DNN Training, from theory to practice

This repository is complementary to the deep learning training lesson given to les Mines ParisTech on the 11th of March 2022 as part of the Large Scale Machine Learning class.

You can find here the slides of the class.

Requirements

To get started, clone it and prepare a new virtual env.

git clone https://github.com/adefossez/dnn_theo_practice
cd dnn_theo_practice
python3 -m venv env
source env/bin/activate
python3 -m pip install -r requirements.txt

Note: it can be safer to install PyTorch through a conda environment to make sure all proper versions of CUDA realted libraries are installed and used. We use pip here for simplicity.

Basic training pipeline

To get started, you can run

python -m basic.train

You can tweak some hyper parameters:

python -m basic.train --lr 0.1 --epochs 30 --model mobilenet_v2

This basic pipeline provides all the essential tools for training a neural network:

  • automatic experiment naming,
  • logging and metric dumping,
  • checkpointing with automatic resume.

Looking at basic/train.py you will see that 90% of the code is not deep learning but pure engineering. Some frameworks like PyTorch Lightning can save you some of this trouble, at the cost of losing control and understanding over what happens. In any case it is good to have an idea of how things work under the hood!

PyTorch-Lightning training pipeline

Insite the pl_hydra folder, I provide the same pipeline, but using PyTorch-Lightning along with Hydra, as an alternative to argparse. Have a look at pl_hydra/train.py to see the differences with the previous implementation.

python -m pl_hydra.train optim.lr=0.1 model=mobilenet_v2

Using existing frameworks:

At this point, it is a good time to introduce a few frameworks you might want to use for your projects.

Hydra

Hydra handles things like logging, configuration parsing (based on YAML files, which is a bit nicer than argparse, especially for large projects), and also has support for some grid search scheduling with a dedicated language. It also supports meta-optimizers like Nevergrad (see after).

Nevergrad

Nevergrad is a framework for gradient free optimization. It can be used to automatically tune your model or optimization hyper-parameters with smart random search.

PyTorch-Lightning

PyTorch Lightning takes care of logging, distributed training, checkpointing and many more boilerplate parts of a deep learning research project. It is powerful but also quite complex, and you will lose some control over the training pipeline.

Dora

Dora is an experiment management framework:

  • Grid searches are expressed as pure python.
  • Experiments have an automatic signature assigned based on its args.
  • Keeps in sync experiments defined in grid files, and those running on the cluster.
  • Basic terminal based reporting of job states, metrics etc.

Dora allows you to scale up to hundreds of experiments without losing your sanity.

Plotting and monitoring utilities

While it is always good to have basic metric reporting inside logs, it can be more conveniant to track experimental progress through a web browser. TensorBoard, initially developed for TensorFlow provide just that. A fully hosted alternative is Wandb. Finally, HiPlot is a lightweight package to easily make sense of the impact of hyperparameters on the metrics of interest.

Unix tools

It is a good idea to learn to master the standard Unix/Linux tools! For large scale machine learning, you will often have to run experiments on a remote cluster, with only SSH access. tmux is a must have, as well as knowing at least of one terminal based file editor (nano is the simplest, emacs or vim are more complex but quite powerful). Take some time to learn about tuning your bashrc, setting up aliases for often used commands etc.

You will probably need tools like grep, less, find or ack. I personnaly really enjoy fd, an alternative to find with some intuitive interface. Similarly ag is a nice way to quickly look through a codebase in the terminal. If you need to go through a lot of logs, you will enjoy ripgreg.

License

This code in this repository is released into the public domain. You can freely reuse any part of it and you don't even need to say where you found it! See the LICENSE for more information.

The slides are released under Creative Commons CC-BY-NC.

Owner
Alexandre Défossez
Alexandre Défossez
Demo of a WAM Prolog implementation in Python

Prol: WAM demo This is a simplified Warren Abstract Machine (WAM) implementation for Prolog, that showcases the main instructions, compiling, register

Bruno Kim Medeiros Cesar 62 Dec 26, 2022
Research on how Gboard Stickers work.

Google-Sticker-Mashup-Research Research on how Gboard Stickers work. Contribute Contributing is nice, and you will be listed below for contributing. C

Jeremiah 45 Oct 28, 2022
Python DSL for writing PDDL

PDDL in Python – Python DSL for writing a PDDL A minimal implementation of a DSL which allows people to write PDDL in python. Based on parsing python’

International Business Machines 21 Nov 22, 2022
Run-Your-Own Firefox Sync Server

Run-Your-Own Firefox Sync Server This is an all-in-one package for running a self-hosted Firefox Sync server. It bundles the "tokenserver" project for

Mozilla Services 1.7k Dec 30, 2022
Med to csv - A simple way to parse MedAssociate output file in tidy data

MedAssociates to CSV file A simple way to parse MedAssociate output file in tidy

Jean-Emmanuel Longueville 5 Sep 09, 2022
Parametric Bottle in CADQuery

Parametric Bottle using CADQuery The proposed code makes it possible to generate different types and sizes of 3D bottles in order to train Pixel2mesh

Ayoub EL HOUDRI 1 May 22, 2022
*考研学习利器,玩电脑控制不住自己时,可以使用该程序定日期锁屏,同时有精美壁纸锁屏显示,也不会枯燥。

LockscreenbyTime_win10 A python program in win10. You can set the time to lock the computer(by setting year, month, day), Fullscreen pictures will sho

PixianDouban 4 Jul 10, 2022
Build your own Etherscan with web3.py

Build your own Etherscan with web3.py Video Tutorial: Run it pip3 install -r requirements.txt export FLASK_APP=app export FLASK_ENV=development flask

35 Jan 02, 2023
A simple spyware in python.

Spyware-Python- Dependencies: Python 3.x OpenCV PyAutoGUI PyMongo (for mongodb connection) Flask (Web Server) Ngrok (helps us push our fla

Abubakar 3 Sep 07, 2022
Introduction to Databases Coursework 2 (SQL) - dataset generator

Introduction to Databases Coursework 2 (SQL) - dataset generator This is python script generates a text file with insert queries for the schema.sql fi

Javier Bosch 1 Nov 08, 2021
An open source recipe book from the awesome staff of Clinical Genomics

meatballs An open source recipe book from the awesome staff of Clinical Genomics.

Clinical Genomics 2 Dec 07, 2021
The last walk-through project in code institute diploma course

Welcome Rocky.C, This is the Code Institute student template for Gitpod. We have preinstalled all of the tools you need to get started. It's perfectly

Rocky.C 1 Jan 31, 2022
The program calculates the BMI of people

Programmieren Einleitung: Das Programm berechnet den BMI von Menschen. Es ist sehr einfach zu handhaben, so können alle Menschen ihren BMI berechnen.

2 Dec 16, 2021
CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, written in Python.

CaskDB - Disk based Log Structured Hash Table Store CaskDB is a disk-based, embedded, persistent, key-value store based on the Riak's bitcask paper, w

886 Dec 27, 2022
Script for resizing MTD partitions on a QNAP device in order to be available to upgrade from buster to bullseye

QNAP partitions resize for kirkwood devices. As explained by Marin Michlmayr, Debian bullseye support on kirkwood QNAP devices was dropped due to [mai

Arnaud Mouiche 26 Jan 05, 2023
An Insurance firm providing tour insurance is facing higher claim frequency

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare t

1 Jan 27, 2022
An advanced NFT Generator

NFT Generator An advanced NFT Generator Free software: GNU General Public License v3 Documentation: https://nft-generator.readthedocs.io. Features TOD

NFT Generator 5 Apr 21, 2022
Transpiles some Python into human-readable Golang.

pytago Transpiles some Python into human-readable Golang. Try out the web demo Installation and usage There are two "officially" supported ways to use

Michael Phelps 318 Jan 03, 2023
奇遇淘客服务器端

奇遇淘客 APP 服务器端 警告 正在使用 v0.2.0 版本的用户,请尽快升级到 v0.2.1。 v0.2.0 版本的 Docker 镜像中包含了有问题的 aiohttp。 奇遇淘客代码库 奇遇淘客 iOS APP 奇遇淘客 Android APP 奇遇淘客文档 服务器端文档 Docker 使用

奇遇科技 92 Nov 09, 2022
hey, this repo is the backend of the sociio project

sociio backend Hey, this repository is a part of sociio project , In this repo we are working to create an independent server for everything you can i

2 Jun 09, 2022