Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Overview

Kaggle-titanic

This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this repository is to provide an example of a competitive analysis for those interested in getting into the field of data analytics or using python for Kaggle's Data Science competitions .

Quick Start: View a static version of the notebook in the comfort of your own web browser.

Installation:

To run this notebook interactively:

  1. Download this repository in a zip file by clicking on this link or execute this from the terminal: git clone https://github.com/agconti/kaggle-titanic.git
  2. Install virtualenv.
  3. Navigate to the directory where you unzipped or cloned the repo and create a virtual environment with virtualenv env.
  4. Activate the environment with source env/bin/activate
  5. Install the required dependencies with pip install -r requirements.txt.
  6. Execute ipython notebook from the command line or terminal.
  7. Click on Titanic.ipynb on the IPython Notebook dasboard and enjoy!
  8. When you're done deactivate the virtual environment with deactivate.

Dependencies:

Kaggle Competition | Titanic Machine Learning from Disaster

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

In this contest, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy.

This Kaggle Getting Started Competition provides an ideal starting place for people who may not have a lot of experience in data science and machine learning."

From the competition homepage.

Goal for this Notebook:

Show a simple example of an analysis of the Titanic disaster in Python using a full complement of PyData utilities. This is aimed for those looking to get into the field or those who are already in the field and looking to see an example of an analysis done with Python.

This Notebook will show basic examples of:

Data Handling

  • Importing Data with Pandas
  • Cleaning Data
  • Exploring Data through Visualizations with Matplotlib

Data Analysis

  • Supervised Machine learning Techniques: + Logit Regression Model + Plotting results + Support Vector Machine (SVM) using 3 kernels + Basic Random Forest + Plotting results

Valuation of the Analysis

  • K-folds cross validation to valuate results locally
  • Output the results from the IPython Notebook to Kaggle

Benchmark Scripts

To find the basic scripts for the competition benchmarks look in the "Python Examples" folder. These scripts are based on the originals provided by Astro Dave but have been reworked so that they are easier to understand for new comers.

Competition Website: http://www.kaggle.com/c/titanic-gettingStarted

Comments
  • output file

    output file "data/output/logitregres.csv" contains the survived values other than {0,1}

    Thanks for the great article and code. I see that direct submission of output file to kaggle results in error and it says Survived column values must be either 0 or 1.

    Am I missing something? Should I have a cutoff and turn them in to 0 or 1?

    opened by srini09 2
  • Fixed issue with bar chart

    Fixed issue with bar chart

    If auto-sorting is on (as per default), the returned series object is sorted by values, i.e. for „male“ the not-survived category is reported first and for „female“ the survived. When summing over male and female, the categories get mixed up.

    opened by metatier 2
  • Adds the updated csv files with capitalied column names. Fixed the iPyth...

    Adds the updated csv files with capitalied column names. Fixed the iPyth...

    ...on Notebook so it works with capitalized column headers. Updated the data folder with the two new csv files (train and test) as well as output/logitregres.csv.

    opened by thearpitgupta 2
  • Column headers are now capitalized

    Column headers are now capitalized

    Looks like column headers in the training data set are now capitalized. See here http://www.kaggle.com/c/titanic-gettingStarted/download/train.csv It's not capitalized in the data set used used in the repo https://github.com/agconti/kaggle-titanic/blob/master/data/train.csv Wonder if Kaggle changed the data set and intentionally made this change. Anyways, if you want I am happy to submit a PR that works with capitalized column names. Let me know. Thanks.

    PS - Great work.

    opened by thearpitgupta 2
  • sharey for subplots

    sharey for subplots

    Not sure if you're original intention was to show the Y axis for all your subplots in input 14 but if it wasn't you can pass in sharey=True into df.plot() function to eliminate the redundant axes.

    example

    Awesome work on the notebook btw!

    opened by zunayed 2
  • Install KaggleAux through pip

    Install KaggleAux through pip

    Currently, a subsection of KaggleAux is included in this repository as a temporary connivence. It would be cleaner to have KaggleAux as a 3rd party dependency installed through pip. This would be less confusing to users, and would allow updates in KaggleAux to be better incorporated.

    enhancement 
    opened by agconti 1
  • Categorization of algorithms

    Categorization of algorithms

    The README and several places in notebook categorize SVM and Random Forest into "Unsupervised Learning". They actually belong to "Supervised Learning".

    e.g. http://cs229.stanford.edu/notes/cs229-notes3.pdf

    opened by hupili 1
  • Suggestion -- update requirements.txt

    Suggestion -- update requirements.txt

    Hi, I don't know if this repo is still maintained, but would be nice to update the requirements.txt with supported versions.

    :+1: Thanks for putting this repo together.

    opened by DaveOkpare 0
  • Update agc_simp_gendermodel.py

    Update agc_simp_gendermodel.py

    data indexing was inappropriate for the operation taking care Lines #18,#19 index 3 , we have Name of passenger but not gender , so all the time we'll get false
    Lines #26,#27,#28 , proportions should be calculated on Survived column , not on PassengerId

    opened by praveenbommali 0
  • why use barh and ylim

    why use barh and ylim

    I don't understand the need of using barh and ylim functions in plotting.Simple vertical graphs are easier to understand then what is the purpose of using barh.And Thank you for sharing this notebook it's really informative.

    opened by barotdhrumil21 0
Releases(v0.2.0)
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022