A multi-entity Transformer for multi-agent spatiotemporal modeling.

Overview

baller2vec

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling. arXiv. 2021.

Left: the input for baller2vec at each time step t is an unordered set of feature vectors containing information about the identities and locations of NBA players on the court. Right: baller2vec generalizes the standard Transformer to the multi-entity setting by employing a novel self-attention mask tensor. The mask is then reshaped into a matrix for compatibility with typical Transformer implementations.
By exclusively learning to predict the trajectory of the ball, baller2vec was able to infer idiosyncratic player attributes.
Further, nearest neighbors in baller2vec's embedding space are plausible doppelgängers. Credit for the images: Erik Drost, Keith Allison, Jose Garcia, Keith Allison, Verse Photography, and Joe Glorioso.
Additionally, several attention heads in baller2vec appear to perform different basketball-relevant functions, such as anticipating passes. Code to generate the GIF was adapted from @linouk23's NBA Player Movement's repository.
Here, a baller2vec model trained to simultaneously predict the trajectories of all the players on the court uses both the historical and current context to forecast the target player's trajectory at each time step. The left grid shows the target player's true trajectory at each time step while the right grid shows baller2vec's forecast distribution. The blue-bordered center cell is the "stationary" trajectory.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:1609.03675},
   year={2021}
}

Training baller2vec

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Animating a sequence

  1. If you don't have a display hooked up to your GPU server, you'll need to first clone the repository to your local machine and retrieve certain files from the remote server:
# From your local machine.
mkdir -p ~/scratch
cd ~/scratch

username=michael
server=gpu3.cse.eng.auburn.edu
data_dir=/home/michael/baller2vec_data
scp ${username}@${server}:${data_dir}/baller2vec_config.pydict .

games_dir=${data_dir}/games
gameid=0021500622

scp ${username}@${server}:${games_dir}/\{${gameid}_X.npy,${gameid}_y.npy\} .
  1. You can then run this code in the Python interpreter from within the repository (make sure you source .basketball_profile first if running locally):
import os

from animator import Game
from settings import DATA_DIR, GAMES_DIR

gameid = "0021500622"
try:
    game = Game(DATA_DIR, GAMES_DIR, gameid)
except FileNotFoundError:
    home_dir = os.path.expanduser("~")
    DATA_DIR = f"{home_dir}/scratch"
    GAMES_DIR = f"{home_dir}/scratch"
    game = Game(DATA_DIR, GAMES_DIR, gameid)

# https://youtu.be/FRrh_WkyXko?t=109
start_period = 3
start_time = "1:55"
stop_period = 3
stop_time = "1:51"
game.show_seq(start_period, start_time, stop_period, stop_time)

to generate the following animation:

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

# Experiment identifier. Output will be saved to ${EXPERIMENTS_DIR}/${JOB}.
JOB=$(date +%Y%m%d%H%M%S)

# Training options.
echo "train:" >> ${JOB}.yaml
task=ball_traj  # ball_traj, ball_loc, event, player_traj, score, or seq2seq.
echo "  task: ${task}" >> ${JOB}.yaml
echo "  min_playing_time: 0" >> ${JOB}.yaml  # 0/13314/39917/1.0e+6 --> 100%/75%/50%/0%.
echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
echo "  train_prop: 0.95" >> ${JOB}.yaml
echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
echo "  valid_samples: 1000" >> ${JOB}.yaml
echo "  workers: 10" >> ${JOB}.yaml
echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
if [[ ("$task" = "event") || ("$task" = "score") ]]
then
    prev_model=False
    echo "  prev_model: ${prev_model}" >> ${JOB}.yaml
    if [[ "$prev_model" != "False" ]]
    then
        echo "  patience: 5" >> ${JOB}.yaml
    fi
fi

# Dataset options.
echo "dataset:" >> ${JOB}.yaml
echo "  hz: 5" >> ${JOB}.yaml
echo "  secs: 4" >> ${JOB}.yaml
echo "  player_traj_n: 11" >> ${JOB}.yaml
echo "  max_player_move: 4.5" >> ${JOB}.yaml
echo "  ball_traj_n: 19" >> ${JOB}.yaml
echo "  max_ball_move: 8.5" >> ${JOB}.yaml
echo "  n_players: 10" >> ${JOB}.yaml
echo "  next_score_change_time_max: 35" >> ${JOB}.yaml
echo "  n_time_to_next_score_change: 36" >> ${JOB}.yaml
echo "  n_ball_loc_x: 95" >> ${JOB}.yaml
echo "  n_ball_loc_y: 51" >> ${JOB}.yaml
echo "  ball_future_secs: 2" >> ${JOB}.yaml

# Model options.
echo "model:" >> ${JOB}.yaml
echo "  embedding_dim: 20" >> ${JOB}.yaml
echo "  sigmoid: none" >> ${JOB}.yaml
echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
echo "  nhead: 8" >> ${JOB}.yaml
echo "  dim_feedforward: 2048" >> ${JOB}.yaml
echo "  num_layers: 6" >> ${JOB}.yaml
echo "  dropout: 0.0" >> ${JOB}.yaml
if [[ "$task" != "seq2seq" ]]
then
    echo "  use_cls: False" >> ${JOB}.yaml
    echo "  embed_before_mlp: True" >> ${JOB}.yaml
fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

# Start training the model.
gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vec.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022