Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

Related tags

Deep LearningLiMuSE
Overview

LiMuSE

Overview

Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE explores group communication on a multi-modal speaker extraction model and further compresses the model size with quantization strategy.

Model

Our proposed model is a multi-steam architecture that takes multichannel mixture, target speaker’s enrolled utterance and visual sequences of detected faces as inputs, and outputs the target speaker’s mask in time domain. The encoded audio representations of mixture are then multiplied by the generated mask to obtain the target speech. Please see the figure below for detailed model structure.

flowchart_limuse

Datasets

We evaluate our system on two-speaker speech separation and speaker extraction problems using GRID dataset. The pretrained face embedding extraction network is trained on LRW dataset and MS-Celeb-1M dataset. And we use SMS-WSJ toolkit to obtain simulated anechoic dual-channel audio mixture. We place 2 microphones at the center of the room. The distance between microphones is 7 cm.

Getting Started

Preparation

If you want to adjust configurations of the framework and the path of dataset, please modify the option/train/train.yml file.

Training

Specify the path to train.yml file and run the training command:

python train.py -opt ./option/train/train.yml

This project supports full-precision and quantization training at the same time. Note that you need to modify two values of QA_flag in train.yml file if you would like to switch between full-precision and quantization stage. QA_flag in training settings stands for weight quantization while the one in net_conf stands for activation quantization.

View tensorboardX

tensorboard --logdir ./tensorboard

Result

  • Hyperparameters of LiMuSE

    Symbol Description Value
    N Number of filters in auto-encoder 128
    L Length of the filters (in audio samples) 16
    T Temperature 5
    X Number of GC-equipped TCN blocks in each repeat 6
    Ra Number of repeats in audio block 2
    Rb Number of repeats in fusion block 1
    K Number of groups -
  • Performance of LiMuSE and TasNet under various configurations. Q stands for quantization, VIS stands for visual cue and VP stands for voiceprint cue. Model size and compression ratio are also reported.

Method K SI-SDR (dB) #Params Model Size Compression Ratio
LiMuSE 32 16.72 0.36M 0.16MB 223.75
16 18.08 0.96M 0.40MB 89.50
LiMuSE (w/o Q) 32 23.77 0.36M 1.44MB 24.86
16 24.90 0.96M 3.84MB 9.32
LiMuSE (w/o Q and VP) 32 18.60 0.19M 0.76MB 47.11
16 24.20 0.52M 2.08MB 17.21
LiMuSE (w/o Q and VIS) 32 15.68 0.22M 0.88MB 40.68
16 21.91 0.55M 2.20MB 16.27
LiMuSE (w/o Q and GC) - 23.67 8.95M 35.8MB 1
TasNet (dual-channel) - 19.94 2.48M 9.92MB -
TasNet (single-channel) - 13.15 2.48M 9.92MB -

Citations

If you find this repo helpful, please consider citing:

@inproceedings{liu2021limuse,
  title={LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION},
  author={Liu, Qinghua and Huang, Yating and Hao, Yunzhe and Xu, Jiaming and Xu, Bo},
  booktitle={arXiv:2111.04063},
  year={2021},
}
Owner
Auditory Model and Cognitive Computing Lab
Auditory Model and Cognitive Computing Laboratory @ Institute of Automation, Chinese Academy of Sciences
Auditory Model and Cognitive Computing Lab
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022