Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

Related tags

Deep LearningLiMuSE
Overview

LiMuSE

Overview

Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE explores group communication on a multi-modal speaker extraction model and further compresses the model size with quantization strategy.

Model

Our proposed model is a multi-steam architecture that takes multichannel mixture, target speaker’s enrolled utterance and visual sequences of detected faces as inputs, and outputs the target speaker’s mask in time domain. The encoded audio representations of mixture are then multiplied by the generated mask to obtain the target speech. Please see the figure below for detailed model structure.

flowchart_limuse

Datasets

We evaluate our system on two-speaker speech separation and speaker extraction problems using GRID dataset. The pretrained face embedding extraction network is trained on LRW dataset and MS-Celeb-1M dataset. And we use SMS-WSJ toolkit to obtain simulated anechoic dual-channel audio mixture. We place 2 microphones at the center of the room. The distance between microphones is 7 cm.

Getting Started

Preparation

If you want to adjust configurations of the framework and the path of dataset, please modify the option/train/train.yml file.

Training

Specify the path to train.yml file and run the training command:

python train.py -opt ./option/train/train.yml

This project supports full-precision and quantization training at the same time. Note that you need to modify two values of QA_flag in train.yml file if you would like to switch between full-precision and quantization stage. QA_flag in training settings stands for weight quantization while the one in net_conf stands for activation quantization.

View tensorboardX

tensorboard --logdir ./tensorboard

Result

  • Hyperparameters of LiMuSE

    Symbol Description Value
    N Number of filters in auto-encoder 128
    L Length of the filters (in audio samples) 16
    T Temperature 5
    X Number of GC-equipped TCN blocks in each repeat 6
    Ra Number of repeats in audio block 2
    Rb Number of repeats in fusion block 1
    K Number of groups -
  • Performance of LiMuSE and TasNet under various configurations. Q stands for quantization, VIS stands for visual cue and VP stands for voiceprint cue. Model size and compression ratio are also reported.

Method K SI-SDR (dB) #Params Model Size Compression Ratio
LiMuSE 32 16.72 0.36M 0.16MB 223.75
16 18.08 0.96M 0.40MB 89.50
LiMuSE (w/o Q) 32 23.77 0.36M 1.44MB 24.86
16 24.90 0.96M 3.84MB 9.32
LiMuSE (w/o Q and VP) 32 18.60 0.19M 0.76MB 47.11
16 24.20 0.52M 2.08MB 17.21
LiMuSE (w/o Q and VIS) 32 15.68 0.22M 0.88MB 40.68
16 21.91 0.55M 2.20MB 16.27
LiMuSE (w/o Q and GC) - 23.67 8.95M 35.8MB 1
TasNet (dual-channel) - 19.94 2.48M 9.92MB -
TasNet (single-channel) - 13.15 2.48M 9.92MB -

Citations

If you find this repo helpful, please consider citing:

@inproceedings{liu2021limuse,
  title={LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION},
  author={Liu, Qinghua and Huang, Yating and Hao, Yunzhe and Xu, Jiaming and Xu, Bo},
  booktitle={arXiv:2111.04063},
  year={2021},
}
Owner
Auditory Model and Cognitive Computing Lab
Auditory Model and Cognitive Computing Laboratory @ Institute of Automation, Chinese Academy of Sciences
Auditory Model and Cognitive Computing Lab
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
190 Jan 03, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022