A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Python solutions to solve practical business problems.

Python Business Analytics Also instead of "watching" you can join the link-letter, it's already being sent out to about 90 people and you are free to

Derek Snow 357 Dec 26, 2022
Pydocstringformatter - A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257.

Pydocstringformatter A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257. See What it does fo

Daniël van Noord 31 Dec 29, 2022
Some of the best ways and practices of doing code in Python!

Pythonicness ❤ This repository contains some of the best ways and practices of doing code in Python! Features Properly formatted codes (PEP 8) for bet

Samyak Jain 2 Jan 15, 2022
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory.

Netbox DNS Netbox Dns is a netbox plugin for managing zone, nameserver and record inventory. Features Manage zones (domains) you have. Manage nameserv

Aurora Research Lab 155 Jan 06, 2023
A `:github:` role for Sphinx

sphinx-github-role A github role for Sphinx. Usage Basic usage MyST: :caption: index.md See {github}`astrojuanlu/sphinx-github-role#1`. reStructuredT

Juan Luis Cano Rodríguez 4 Nov 22, 2022
Uses diff command to compare expected output with student's submission output

AUTOGRADER for GRADESCOPE using diff with partial grading Description: Uses diff command to compare expected output with student's submission output U

2 Jan 11, 2022
SqlAlchemy Flask-Restful Swagger Json:API OpenAPI

SAFRS: Python OpenAPI & JSON:API Framework Overview Installation JSON:API Interface Resource Objects Relationships Methods Custom Methods Class Method

Thomas Pollet 361 Nov 16, 2022
Python Programming (Practical) (1-25) Download 👇🏼

BCA-603 : Python Programming (Practical) (1-25) Download zip 🙂 🌟 How to run programs : Clone or download this repo to your computer. Unzip (If you d

Milan Jadav 2 Jun 02, 2022
Build AGNOS, the operating system for your comma three

agnos-builder This is the tool to build AGNOS, our Ubuntu based OS. AGNOS runs on the comma three devkit. NOTE: the edk2_tici and agnos-firmare submod

comma.ai 21 Dec 24, 2022
Minimal reproducible example for `mkdocstrings` Python handler issue

Minimal reproducible example for `mkdocstrings` Python handler issue

Hayden Richards 0 Feb 17, 2022
Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects

CLI tool to measure the build time of different, free configurable Sphinx-Projec

useblocks 11 Nov 25, 2022
Collection of Summer 2022 tech internships!

Collection of Summer 2022 tech internships!

Pitt Computer Science Club (CSC) 15.6k Jan 03, 2023
EasyModerationKit is an open-source framework designed to moderate and filter inappropriate content.

EasyModerationKit is a public transparency statement. It declares any repositories and legalities used in the EasyModeration system. It allows for implementing EasyModeration into an advanced charact

Aarav 1 Jan 16, 2022
This contains timezone mapping information for when preprocessed from the geonames data

when-data This contains timezone mapping information for when preprocessed from the geonames data. It exists in a separate repository so that one does

Armin Ronacher 2 Dec 07, 2021
AiiDA plugin for the HyperQueue metascheduler.

aiida-hyperqueue WARNING: This plugin is still in heavy development. Expect bugs to pop up and the API to change. AiiDA plugin for the HyperQueue meta

AiiDA team 3 Jun 19, 2022
Collections of Beautiful Latex Snippets

HandyLatex Collections of Beautiful Latex Snippets Table 👉 Succinct table with bold separation line and gray text %################## Dependencies ##

Xintao 15 Apr 11, 2022
An awesome Data Science repository to learn and apply for real world problems.

AWESOME DATA SCIENCE An open source Data Science repository to learn and apply towards solving real world problems. This is a shortcut path to start s

Academic.io 20.3k Jan 09, 2023
Crystal Smp plugin for show scoreboards

MCDR-CrystalScoreboards Crystal plugin for show scoreboards | Only 1.12 Usage !!s : Plugin help message !!s hide : Hide scoreboard !!s show : Show Sco

CristhianCd 3 Oct 12, 2021
Test utility for validating OpenAPI documentation

DRF OpenAPI Tester This is a test utility to validate DRF Test Responses against OpenAPI 2 and 3 schema. It has built-in support for: OpenAPI 2/3 yaml

snok 106 Jan 05, 2023