Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

Related tags

Deep Learningtgin
Overview

TGIN

Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

Files in the folder

  • dataset/
    • electronics/
      • uid_voc.pkl: users;
      • mid_voc.pkl: items;
      • cat_voc.pkl: categories;
      • item-info: mapping dict {item:category};
      • reviews-info: interaction records [user, item, rating, timestamp];
      • local_train_splitByUser: train data;
      • local_test_splitByUser: test data;
      • wnd3_alpha_01_theta_09_tri_num_10: triangles data with α=0.1 and θ=0.9;
  • triangle_data/: processed triangles data of the public datasets.
  • script/: implementations of TGIN.
  • triangle_mapreduce.zip: MapReduce implementations of triangle extraction and selection.

Prepare data

1. interaction data

We have processed the raw data and upload it to the electronics/ fold. You can use it directly.

Also, you can get the data from the amazon website and process it using the script:

sh prepare_data.sh

2. co-occurrence graph

You can use the processed triangles data directly, and just skip this step.

python script/gen_wnd_edges.py

3. triangle extraction and selection

We have extracted and selected the triangles of both amazon(books) and amazon(electronics) datasets. You can download and put it into the triangle_data/ folder.

Next, the triangle indexes should be transformed into the input format of the TGIN model.

python process_tridata.py

Also, you can refer to the MapReduce source code in triangle_mapreduce.zip folder to generate triangle indexes.

Train Model

(Recommended) You can skip all the previous steps and run the TGIN model using the script directly.

tar xvf triangle_data/electronics_triangle.tar.gz
tar xvf dataset/electronics.tar.gz 
python script/process_tridata.py

sh run.sh

Required packages

The code has been tested running under Python 2.7.18, with the following packages installed (along with their dependencies):

  • cPickle == 1.17
  • numpy == 1.16.6
  • keras == 2.0.8
  • tensorflow-gpu == 1.5.0

Owner
Alibaba
Alibaba Open Source
Alibaba
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023