⚡ H2G-Net for Semantic Segmentation of Histopathological Images

Overview

H2G-Net

This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images".

We propose a cascaded convolutional neural network for semantic segmentation of breast cancer tumours from whole slide images (WSIs). It is a two-stage design. In the first stage (detection stage), we apply a patch-wise classifier across the image which produces a tumour probability heatmap. In the second stage (refinement stage), we merge the resultant heatmap with a low-resolution version of the original WSI, before we send it to a new convolutional autoencoder that produces a final segmentation of the tumour ROI.

NOTE: This repository is currently in construction! More to be added!!

Setup

Something...

Citation

Please, cite our paper if you find the work useful:

  @misc{pedersen2021hybrid,
  title={Hybrid guiding: A multi-resolution refinement approach for semantic segmentation of gigapixel histopathological images}, 
  author={André Pedersen and Erik Smistad and Tor V. Rise and Vibeke G. Dale and Henrik S. Pettersen and Tor-Arne S. Nordmo and David Bouget and Ingerid Reinertsen and Marit Valla},
  year={2021},
  eprint={2112.03455},
  archivePrefix={arXiv},
  primaryClass={eess.IV}}

Contact

Please, contact [email protected] for any further questions.

Acknowledgements

Code for the AGU-Net and DAGU-Net architectures were based on the publication:

  @misc{bouget2021meningioma,
  title={Meningioma segmentation in T1-weighted MRI leveraging global context and attention mechanisms},
  author={David Bouget and André Pedersen and Sayied Abdol Mohieb Hosainey and Ole Solheim and Ingerid Reinertsen},
  year={2021},
  eprint={2101.07715},
  archivePrefix={arXiv},
  primaryClass={eess.IV}}

Code for the DoubleU-Net architectures were based on the official GitHub repository, based on this publication:

  @INPROCEEDINGS{9183321,
  author={D. {Jha} and M. A. {Riegler} and D. {Johansen} and P. {Halvorsen} and H. D. {Johansen}},
  booktitle={2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)}, 
  title={DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation}, 
  year={2020},
  pages={558-564}}
Owner
André Pedersen
PhD Candidate in Medical Technology at NTNU | Master of Science at SINTEF Health Research
André Pedersen
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023