This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Related tags

Deep LearningObjProp
Overview

ObjProp

Introduction

This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

Installation

This repo is built using mmdetection. To install the dependencies, first clone the repository locally:

git clone https://github.com/anirudh-chakravarthy/objprop.git

Then, install PyTorch 1.1.0, torchvision 0.3.0, mmcv 0.2.12:

conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
pip install mmcv==0.2.12

Then, install the CocoAPI for YouTube-VIS

conda install cython scipy
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

Training

First, download and prepare the YouTube-VIS dataset using the following instructions.

To train ObjProp, run the following command:

python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py

In order to change the arguments such as dataset directory, learning rate, number of GPUs, etc, refer to the following configuration file configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py.

Inference

To perform inference using ObjProp, run the following command:

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos_objprop.py [MODEL_PATH] --out [OUTPUT_PATH.json] --eval segm

A JSON file with the inference results will be saved at OUTPUT_PATH.json. To evaluate the performance, submit the result file to the evaluation server.

License

ObjProp is released under the Apache 2.0 license.

Citation

@article{Chakravarthy2021ObjProp,
  author = {Anirudh S Chakravarthy and Won-Dong Jang and Zudi Lin and Donglai Wei and Song Bai and Hanspeter Pfister},  
  title = {Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation},
  journal = {CoRR},
  volume = {abs/2111.07529},
  year = {2021},
  url = {https://arxiv.org/abs/2111.07529}
}
Owner
Anirudh S Chakravarthy
MS in Computer Vision, CMU | Research Intern, Harvard VCG | B.E. Computer Science, BITS Pilani. Visit my site for more.
Anirudh S Chakravarthy
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022