MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

Related tags

Deep Learningmdetr
Overview

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

WebsiteColabPaper

This repository contains code and links to pre-trained models for MDETR (Modulated DETR) for pre-training on data having aligned text and images with box annotations, as well as fine-tuning on tasks requiring fine grained understanding of image and text.

We show big gains on the phrase grounding task (Flickr30k), Referring Expression Comprehension (RefCOCO, RefCOCO+ and RefCOCOg) as well as Referring Expression Segmentation (PhraseCut, CLEVR Ref+). We also achieve competitive performance on visual question answering (GQA, CLEVR).

MDETR

TL;DR. We depart from the fixed frozen object detector approach of several popular vision + language pre-trained models and achieve true end-to-end multi-modal understanding by training our detector in the loop. In addition, we only detect objects that are relevant to the given text query, where the class labels for the objects are just the relevant words in the text query. This allows us to expand our vocabulary to anything found in free form text, making it possible to detect and reason over novel combination of object classes and attributes.

For details, please see the paper: MDETR - Modulated Detection for End-to-End Multi-Modal Understanding by Aishwarya Kamath, Mannat Singh, Yann LeCun, Ishan Misra, Gabriel Synnaeve and Nicolas Carion.

Aishwarya Kamath and Nicolas Carion made equal contributions to this codebase.

Usage

The requirements file has all the dependencies that are needed by MDETR.

We provide instructions how to install dependencies via conda. First, clone the repository locally:

git clone https://github.com/ashkamath/mdetr.git

Make a new conda env and activate it:

conda create -n mdetr_env python=3.8
conda activate mdetr_env

Install the the packages in the requirements.txt:

pip install -r requirements.txt

Multinode training

Distributed training is available via Slurm and submitit:

pip install submitit

Pre-training

The links to data, steps for data preparation and script for running finetuning can be found in Pretraining Instructions We also provide the pre-trained model weights for MDETR trained on our combined aligned dataset of 1.3 million images paired with text.

The models are summarized in the following table. Note that the performance reported is "raw", without any fine-tuning. For each dataset, we report the class-agnostic box [email protected], which measures how well the model finds the boxes mentioned in the text. All performances are reported on the respective validation sets of each dataset.

Backbone GQA Flickr Refcoco Url
Size
AP AP [email protected] AP Refcoco [email protected] Refcoco+ [email protected] Refcocog [email protected]
1 R101 58.9 75.6 82.5 60.3 72.1 58.0 55.7 model 3GB
2 ENB3 59.5 76.6 82.9 57.6 70.2 56.7 53.8 model 2.4GB
3 ENB5 59.9 76.4 83.7 61.8 73.4 58.8 57.1 model 2.7GB

Downstream tasks

Phrase grounding on Flickr30k

Instructions for data preparation and script to run evaluation can be found at Flickr30k Instructions

AnyBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.5 92.9 94.9 83.4 93.5 95.3 model 3GB
EfficientNet-B3 COCO+VG+Flickr 82.9 93.2 95.2 84.0 93.8 95.6 model 2.4GB
EfficientNet-B5 COCO+VG+Flickr 83.6 93.4 95.1 84.3 93.9 95.8 model 2.7GB

MergedBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.3 91.8 93.7 83.8 92.7 94.4 model 3GB

Referring expression comprehension on RefCOCO, RefCOCO+, RefCOCOg

Instructions for data preparation and script to run finetuning and evaluation can be found at Referring Expression Instructions

RefCOCO

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 86.75 89.58 81.41 model 3GB
EfficientNet-B3 COCO+VG+Flickr 87.51 90.40 82.67 model 2.4GB

RefCOCO+

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 79.52 84.09 70.62 model 3GB
EfficientNet-B3 COCO+VG+Flickr 81.13 85.52 72.96 model 2.4GB

RefCOCOg

Backbone Pre-training Image Data Val Test url size
Resnet-101 COCO+VG+Flickr 81.64 80.89 model 3GB
EfficientNet-B3 COCO+VG+Flickr 83.35 83.31 model 2.4GB

Referring expression segmentation on PhraseCut

Instructions for data preparation and script to run finetuning and evaluation can be found at PhraseCut Instructions

Backbone M-IoU Precision @0.5 Precision @0.7 Precision @0.9 url size
Resnet-101 53.1 56.1 38.9 11.9 model 1.5GB
EfficientNet-B3 53.7 57.5 39.9 11.9 model 1.2GB

Visual question answering on GQA

Instructions for data preparation and scripts to run finetuning and evaluation can be found at GQA Instructions

Backbone Test-dev Test-std url size
Resnet-101 62.48 61.99 model 3GB
EfficientNet-B5 62.95 62.45 model 2.7GB

Long-tailed few-shot object detection

Instructions for data preparation and scripts to run finetuning and evaluation can be found at LVIS Instructions

Data AP AP 50 AP r APc AP f url size
1% 16.7 25.8 11.2 14.6 19.5 model 3GB
10% 24.2 38.0 20.9 24.9 24.3 model 3GB
100% 22.5 35.2 7.4 22.7 25.0 model 3GB

Synthetic datasets

Instructions to reproduce our results on CLEVR-based datasets are available at CLEVR instructions

Overall Accuracy Count Exist
Compare Number Query Attribute Compare Attribute Url Size
99.7 99.3 99.9 99.4 99.9 99.9 model 446MB

License

MDETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

If you find this repository useful please give it a star and cite as follows! :) :

    @article{kamath2021mdetr,
      title={MDETR--Modulated Detection for End-to-End Multi-Modal Understanding},
      author={Kamath, Aishwarya and Singh, Mannat and LeCun, Yann and Misra, Ishan and Synnaeve, Gabriel and Carion, Nicolas},
      journal={arXiv preprint arXiv:2104.12763},
      year={2021}
    }
Owner
Aishwarya Kamath
Find me @ ashkamath.github.io
Aishwarya Kamath
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Kim Seonghyeon 2.2k Jan 01, 2023
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022